ID : th-10-Trigonometry [1] Grade 10 Trigonometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) If 2sinθ – cosθ = 2, f ind the value of sinθ + 2cosθ. (2) Simplif y (3) Simplif y (4) Simplif y (5) . If sec θ = a/b and 0° > θ > 90°, f ind value of tan θ. (6) From a tower on a straight road, the angles of depression of two cars at an instant are 45° and 60°. If the cars are 20 m apart, f ind the height of the tower. Choose correct answer(s) f rom given choice (7) T he value of sin x increases f aster than tan x as x increases (x < 90°). (8) a. T rue b. False c. Depends on value of θ d. Depends on increment in θ Simplif y a. 1/secθ b. 2 cotθ c. 2 tanθ d. 2 secθ (9) =? a. 1 + cot θ b. tanθ + cot θ c. tanθ - cot θ d. cotθ - tan θ (10) If the length of the shadow of a tower is increasing, then the angle of elevation of the sun is decreasing. a. T rue b. False c. Depends on the height of tower d. Depends on value of angle (11) If sin x + sin2x = 1, then f ind the value of expression (cos 2x + cos 4x). a. 1 b. 0 c. 2 d. 0.5 (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [2] (12) Simplif y a. 1 + tanθ - cotθ b. sin2θ - cos 2θ c. 0 d. 1 - sinθ cosθ (13) tan2θ Simplif y 1 + . 1 + secθ a. tan θ b. sec θ c. cot θ d. cosec θ (14) Simplif y cos 3θ sin3(90°-θ) + sin3θ cos 3(90°-θ) + 3 cos 2θ sin2θ a. tanθ + cotθ b. sinθ cosθ c. sinθ + cosθ d. 1 Fill in t he blanks (15) sin257° + sin233° + sin233° + sin 57° cos 33° = . cos 257° + cos 233° © 2016 Edugain (www.edugain.com). All Rights Reserved (C) 2016 Edugain (www.Edugain.com) Many more such worksheets can be generated at www.edugain.com Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [3] Answers (1) 1 Step 1 It is given that 2sinθ – cosθ = 2 ⇒ (2sinθ – cosθ)2 = 22 ....... [On squaring both sides] Step 2 Now add (sinθ + 2cosθ)2 to both sides of equation ⇒ (2sinθ – cosθ)2 + (sinθ + 2cosθ)2 = 22 + (sinθ + 2cosθ)2 ⇒ 4sin2θ + cos 2θ - 4sinθcosθ + sin2θ + 4cos 2θ + 4sinθcosθ = 4 + (sinθ + 2cosθ)2 ⇒ 5sin2θ + 5cos 2θ + 4sinθcosθ - 4sinθcosθ = 4 + (sinθ + 2cosθ)2 ⇒ 5(sin2θ + cos 2θ) = 4 + (sinθ + 2cosθ)2 ⇒ 5 = 4 + (sinθ + 2cosθ)2 ⇒ (sinθ + 2cosθ)2 = 5 - 4 ⇒ (sinθ + 2cosθ)2 = 1 ⇒ sinθ + 2cosθ = ± 1 Step 3 Since 2sinθ – cosθ=2, ignore the negative value. T heref ore, sinθ + 2cosθ = 1 (2) 2 secθ Step 1 = Step 2 = Step 3 = (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [4] (3) sinθ + cosθ Step 1 cosθ We have been asked to simplif y the sinθ + 1 - tanθ . 1 - cotθ Step 2 Now, cosθ cosθ sinθ + 1 - tanθ = cos 2θ sin2θ sinθ cosθ + 1- cosθ sinθ sinθ - cosθ cos 2θ - sinθ - cosθ = 1- sin2θ + cosθ - sinθ = = 1 - cotθ sinθ sinθ - cosθ sin2θ - cos 2θ sinθ - cosθ = (sinθ - cosθ)(sinθ + cosθ) sinθ - cosθ = sinθ + cosθ Step 3 T heref ore, cosθ + 1 - tanθ (C) 2016 Edugain (www.Edugain.com) sinθ is equal to the sinθ + cosθ. 1 - cotθ Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [5] (4) cosec θ + cot θ Step 1 We know that 1 - cos 2θ = sin2θ. Using this identity we can simplif y denominator, if we multiply it by 1 + cosθ Step 2 Now on multiplying numerator and denominator by 1 + cosθ, √( 1 + cosθ ) = √( 1 - cosθ = √( 1 + cosθ × 1 - cosθ (1 + cosθ)2 1 + cosθ ) 1 + cosθ ) 1 - cos 2θ = √( (1 + cosθ)2 ) sin2θ = 1 + cosθ sinθ = 1 + sinθ cosθ sinθ = cosecθ + cotθ (5) Step 1 We know that, tan θ = √(sec2θ - 1) Step 2 Now replace value of sec(θ) in above equation ⇒ tan(θ) = Step 3 Simplif y RHS of above equation ⇒ tan(θ) = (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [6] (6) 10(3 + √3 ) m Step 1 Following f igure shows the tower and the cars, Let's assume the height of the tower(AB) be 'y' and the distance between the tower and the f arther car i.e BC be 'x'. According to the question, the distance between the cars is 20 m, theref ore, BD = (x - 20) m Step 2 In right angled triangle ABD, AB = tan60° BD y ⇒ = √3 x - 20 ⇒ y = √3(x - 20) -----(1) Step 3 In right angled triangle ABC, AB = tan45° BC ⇒ y =1 x ⇒ y = x -----(2) Step 4 By putting the value of 'x' f rom equation (2) to equation (1), we get: y = 10(3 + √3 ) Step 5 T hus, the height of the tower is 10(3 + √3 ) m. (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [7] (7) b. False Step 1 Let's observe this right angle triangle, sin x = BC AC tan x = BC AB Step 2 Now let's increase the angle x such that height BC remains unchanged, Step 3 By comparing above two pictures, we can notice that decrease in AB is larger than decrease in AC Step 4 Now numerator of both the f ractions are unchanged, but denominator of tan x is decreasing f aster than denominator of sin x. T heref ore tan x increases f aster than sin x, as x increases Step 5 Hence given statement is False (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [8] (8) b. 2 cotθ Step 1 = Step 2 = Step 3 = (9) b. tanθ + cot θ Step 1 Using identities sec2θ = 1 + tan2θ and cosec2θ = 1 + cot 2θ S= ⇒S= Step 2 Using the relation tanθcotθ = 1, we can re-write above expression as f ollowing ⇒S= Step 3 Using (a + b)2 = a2 + b2 + 2ab ⇒S= ⇒ S = tanθ + cotθ (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [9] (10) a. T rue Step 1 Let's assume, BD is the lengths of the shadow of the tower AB and the length of the shadow of the tower is increasing f rom BD to BC, as shown in the f ollowing f igure, Step 2 It can be seen that angle ∠x > ∠y, theref ore as the shadow of the tower is increasing, the angle of elevation of the sun is decreasing Step 3 T heref ore, given statement is T rue. (11) a. 1 Step 1 It is given that sin x + sin2x = 1 ............. Eq. (1) Step 2 Above equation can be re-written as f ollowing ⇒ 1 - sin2x = sin x Step 3 Since 1 - sin2θ = cos 2θ, we can re-write equation as f ollowing, ⇒ cos 2x = sin x ............. Eq. (2) Step 4 Now replace value of cos 2x = sin x, in required expression cos 2x + cos 4x = sin x + sin2x ⇒ cos 2x + cos 4x = 1 .................... Using Eq. (1) (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [10] (12) c. 0 Step 1 On adding two f ractions = Step 2 = Step 3 = Step 4 = (13) b. sec θ Step 1 Let, S = 1 + tan2θ 1 + secθ Step 2 Using identity tan2θ = sec2θ - 1, ⇒S= 1+ sec2θ - 1 1 + secθ Step 3 Using a2 - b2 = (a+b)(a-b), ⇒S= 1+ (secθ + 1)(secθ - 1) 1 + secθ ⇒ S = 1 + (secθ - 1) ⇒ S = secθ (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : th-10-Trigonometry [11] (14) d. 1 Step 1 Since sin(90°-θ ) = cos θ and cos(90°-θ ) = sin θ , expression can be rewritten as f ollowing = (cos 2θ)3 + (sin2θ)3 + 3 cos 2θ sin2θ Step 2 Since x3 + y3 = ( x + y ) ( x2 + y2 - xy) = (cos 2θ + sin2θ ) [ (cos 2θ)2 + (sin2θ)2 - cos 2θ sin2θ ] + 3 cos 2θ sin2θ Step 3 Since cos 2θ + sin2θ =1 and x2 + y2 = (x+y)2 - 2 xy) = (cos 2θ + sin2θ ) [ (cos 2θ + sin2θ)2 - 2 cos 2θ sin2θ - cos 2θ sin2θ] + 3 cos 2θ sin2θ = [ 1 - 3 cos 2θ sin2θ ] + 3 cos 2θ sin2θ =1 (15) 2 Step 1 Lets, sin257° + sin233° S= + sin233° + sin 57° cos 33° cos 257° + cos 233° Step 2 Using identities sin(θ) = cos(90° - θ) and cos(θ) = sin(90° - θ), we can re-write expression as f ollowing sin257° + cos 2(90°-33°) ⇒S= + sin233° + cos (90°-57°) cos 33° cos 257° + cos 2(90°-33°) sin257° + cos 257° ⇒S= + sin233° + cos 33° cos 33° cos 257° + cos 257° Step 3 Using identity sin2θ + cos 2θ = 1 ⇒ S = 1/1 + sin233° + cos 233° ⇒S= 1+ 1 ⇒S= 2 (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited
© Copyright 2026 Paperzz