Dégradation et biodégradation des matériaux biorésorbables Jean COUDANE Centre de Recherches sur les Biopolymères Artificiels UMR CNRS 5473 Faculté de Pharmacie, Montpellier, France [email protected] Sophia Antipolis 30 Mars 2006 Plan Introduction-mécanisme-évaluation Dégradation hydrolytique Dégradation enzymatique 1 Poly (α α-hydroxy acides) Biomatériaux polymères de synthèse dégradables O PLA/PLGA (biomédical) O n O CH CH3 PCL (environnemental) in tr od uc ti o C n O C CH2 n O O C (C H 2 ) 5 n General Degradation Mechanism of PLA-based Devices 1-Penetration of H2O Surface mechanism enzymatic Water uptake : 2-Hydrolysis of polymeric chains Size-dependent Core mechanism Hydrolytic Massive objects Decrease of molar masses formation of low molecular masses compounds Variation in composition (copolymers) Modification of surface aspect Differentiation between surface and core a-Weight loss 3-Elimination of degradation compounds b-Acid lactic titration 2 in tr od uc ti on Degradation percentage vs random chain scission Molar masses Mn= 72000 Mn= 7200 Mn= 720 Mn/2 1/1000 1/100 1/10 DPn0= 1000 DPn= 500 DPn0=100 DPn= 50 DPn0=10 DPn= 5 SEC-Half degradation No lag time Weight loss Soluble oligomers, Mn<720, DPn<10 At least 1/10 WL-degradation Lag time DP=1 Lactic acid formation LA-degradation At least 5/10 int r od uc tio n Lag time Degradation percentage vs depolymerization Molar masses 10 chain breakings (1/100) Mn= 72000 DPn= 1000 Mn≈ 71000 DPn= 990 Mn constant no significant SEC-degradation WL-degradation Weight loss Immediate weight loss No lag time Lactic acid formation LA-degradation Immediate lactate formation No lag time 3 in u od tr ion ct Molar masses Random Chain Scission Mn decrease Depolymerization Mn constant No lag time Weight loss Immediate weight loss delayed weight loss Good evaluation of degradation Lag time Lactic acid No lag time Immediate lactate formation Good evaluation of degradation No lag time delayed lactate formation Lag time Plan Introduction-mécanismes Dégradation hydrolytique Dégradation enzymatique 4 ion e at iqu d t a gr oly Dé ydr h Li et al 1990 First step of degradation: water uptake PBS 37°C plates (2-3 mm) 37.5% LLact 37.5% DLact 25% Gly water uptake Distilled water 37°C PLA37.5GA25 Time (days) PLA x 30 x= % unités L-lactique PLA75GA25 75% LLact 0% DLact 25% Gly water uptake PLAxGAy y= % unités glycolique Stereochemistry Hydrophobicity crystallinity Time (weeks) 10 modulus (Gpa) ion e second step of degradation: hydrolysis of polymeric backbone Li et al 1990 at iqu d t a gr oly PBS, 37°C plates (2-3 mm) Dé ydr h PLA37.5GA25 Continuous decrease of molar masses 10 Time (days) core modulus (Gpa) SEC surface PLA75GA25 Time min Core-surface effect 5 Time (weeks) 5 ion e at iqu Third step of degradation: weight loss d t a gr oly Dé ydr PBS 37°C plates (2-3 mm) h Weight loss % Li et al 1990 PLA37.5GA25 Time (days) lag time Weight loss % Delayed loss of matter PLA75GA25 Time (weeks) Random chain scission ion e at iqu d t a gr oly Dé ydr h General degradation mechanism of PLA-based devices Soluble oligomers Soluble oligomers Time in weeks 0 15 Water absorption and degradation without loss of matter Beginning of the loss of matter Central degradation and formation of an outer membrane Formation of hollow structure Weight loss Role of Polydispersity Same results in vivo 6 ion e at iqu d t a gr oly Dé ydr h Dégradation interne- cas du PLA From massive objects to micro/nanoparticles 7 Influence of size on degradation Grizzi et al, 1996 From plates to microparticles Molecular weight % of initial Mw water uptake (%) ion e at iqu d t a gr oly Dé ydr h plates films µspheres + others plates plates films Plates 2-3mm Beads 0.5-1mm ion e at iqu d t a gr oly Dé ydr h L-lactic acid (mM) Weight loss (%) PLA50 plates beads µspheres films µspheres 125-250 µm Films ≈ 60µm Influence of size on degradation Grizzi et al, 1996 From plates to microparticles Molecular weights (SEC) Differentiation core-surface films plates microspheres beads Degradation time maximum 30 weeks 8 ion e at iqu d t a gr oly Dé ydr h O (CH2)4 C C H O (CH2)4 C Water uptake (%) 40 30 20 10 0 100 Time (days) 200 Molar Masses 80000 60000 40000 20000 0 100 200 Time (days) x 40 30 20 10 0 0,00 PCL 4,00 8,00 12,00 16,00 Time (hours) PCLCOOH1 100000 0 Phosphate buffer (pH 7.4), 37°C, plates of polymers ( Ø = 1cm, t= 2mm) Substitution ratio = 11% C H 1-x Weight loss (%) Water uptake (%) COOH O H O O 0 Gimenez et al, 2000 Chemical modification of PCL 25 20 15 10 5 0 300 PCLCOOH1 Mw PCL Mw 0 50 100 150 Time (days) 200 PCLCOOH1 PCL ion e at iqu d t a gr oly Dé ydr h Surface Aspect (ESEM) PCL t98 Magnification: x 150 PCLCOOH1 t98 9 ion e at iqu d t a gr oly Dé ydr h COOH O H O O (CH2)4 C O C O H (CH2)4 C x PCLCOOH11 : 30% in 12h PCL : 0.7% in 28 weeks 1-Apparent water uptake : (mf-mi0)/mi0 2-Molecular Weights x=11% C H 1-x PCLCOOH11 : after 24 weeks Mn / 2.5 , Mw / 7 PI PCL : after 28 weeks Mn / 1.1 and Mw / 1.3 3-Weight loss PCLCOOH11 : 22% in 24 weeks PCL : 1.6% in 28 weeks Preferential Degradation of acidic units : PCLCOOH11: After 24 weeks : 3.5% COOH groups on the chain ion e at iqu d t a gr oly Dé ydr h Cas des copolymères Li et al, 2005 PLA et PGA : dégradation essentiellement hydrolytique PCL peu de dégradation hydrolytique H O Copolymères statistiques PCL-PGA O (CH2)4 C O 1-x C H C x Prise d’eau (%) Perte de masse (%) H H O C Temps (semaines) Temps (semaines) Cop1 à cop7: taux de PCL 10 ion e at iqu d t a gr oly Dé ydr h Cas des copolymères Copolymères blocs PEG2000-PLA30000 Stefani et al, 2006 100 LA/EO 90 Effet cœur/surface 80 P50 70 P60 60 P61 50 P67 40 P61UF 30 hydrosoluble 20 10 0 0 10 20 30 40 50 60 70 80 90 Préparation « anionique » PLA PEG 90 LA/EO Après purification 80 70 PSn50 60 PSn50P 50 PSn50UF 40 PSn500 PSn500P 30 PSn500UF 20 10 0 0 20 40 60 80 100 120 Préparation «octanoate d’étain» ion e at iqu d t a gr oly Dé ydr h Conclusions on degradation of PLA-based polymers Degradation rate can be modulated according to some parameters: Structural parameters Stereoisomery of PLAX X > 92 semi-crystalline : slow degradation rate X≈ 50 amorphous : higher degradation rate Copolymers GA : increase hydrophylicity higher degradation rate PEO (blocs): variation of proportions Size parameters Massive objects : differentiation core surface Micro and nanospheres : no differentiation core-surface Degradation rate function of S/V ratio. Other parameters Molecular masses, Polydispersity Reaction medium : pH, Temperature, presence of enzyme Purity of polymers PLA, PLAGA : days to months 11 Plan Introduction Dégradation hydrolytique Dégradation enzymatique ion at ique degradation medium: enzymes Landry et al 1996 d t a gr m a PLA50 nanoparticles Dé nzy e 100 nm, Albumin coating pH = 1.2, Pepsin pH = 7.5, Pancreatic lipase (Mn = 38000) 80 80 500 Incubation time (min) Weight loss % Percentage of PLA converted in lactate Percentage of PLA converted in lactate 80 500 Incubation time (min) 12 ion at ique d t a gr m a Dé nzy e degradation medium: enzymes Landry et al 1996 PLA50 nanoparticles 105 106 Molar Mass (log scale) No variation in PLA50 Molar Masses Surface erosion ion at iqueTritiated PCL : Determination of biodegradation kinetics Ponsart et al, 2001 d t a gr m a Dé nzy T O H O e x <<1% O (CH2)4 C C O (CH2)4 C C H x H 1-x % of initial radioactivity Environmental Conditions: PCL film, activated sludge, aqueous medium, 37°C 100 biomass 80 40 60 30 40 20 10 20 0 0 1 2 3 4 5 0 0 10 20 30 40 50 60 70 Time (days) After 72 days : 75-85% of the initial radioactivity were found in the incubation medium under the form of tritiated water and the rest on the form of biomass 13 ion at ique d t a gr m a Dé nzy e PCL Methylation: influence de la structure sur la biodegradation CH3 O H O O O (CH2)4 C C H Dégradation hydrolytique O (CH2)4 C (x=15%) C H 1-x x PCLCH3 ≈ PCL (pH 7.4, 37°C) Pas de variation significative (pas de dégradation) Biodégradation weight loss (%) (pH 7.4, 37°C, pseudomonas cepacia lipase) [Ponsart et al., 2003] Diminution de la vitesse de biodégradation PCLCH3 < PCL 60 40 20 0 0,00 1,00 2,00 3,00 4,00 5,00 time (days) conclusions Paramètres structuraux Stéréoisomérie, cristallinité, hydrophilie Masses molaires, polymolécularité Copolyméres : variation de la composition, variation de la vitesse de dégradation Taille des objets Objets massifs: differentiation coeur-surface Micro and nanospheres : pas de differentiation coeur-surface Vitesse de dégradation fonction du rapport S/V. Autres paramètres Milieu réactionnel: pH, Temperature, presence of enzyme 14 remerciements S. Li, H. Garreau, I. Grizzi S. Ponsart, S. Gimenez, A. des Rieux 15
© Copyright 2025 Paperzz