MAT 274 HW 3 Solutions c Bin Cheng MAT 274 HW 3 Solutions ( 50 points total ) 1. (20’) Find the general solution in trigonometric form y 00 (x) + 4y 0 (x) + 8y(x) = 0 and then y 00 (x) + 4y 0 (x) + 8y(x) + 10e−x = 0. (1) Note: to accommodate the 10e−x term, use ae−x as your “guess” for a particular solution. Solution. Homogeneous part y 00 (x) + 4y 0 (x) + 8y(x) = 0 (2) Char. equation: r2 + 4r + 8 = 0 =⇒ r1 = −2 + 2i, r2 = −2 − 2i =⇒ yh (x) = e−2x (C1 cos(2x) + C2 sin(2x)) “Guess” a nonhomogeneous solution ynh = ae−x so that 0 ynh = −ae−x , 00 = ae−x . ynh Plug them into the nonhomogeneous DE (1) ae−x + 4(−ae−x ) + 8ae−x + 10e−x = 0 Factor out e−x e−x (a − 4a + 8a + 10) = 0 The coef of e−x has to equal zero (a − 4a + 8a + 10) = 0 =⇒ a = −2 Thus, we found a particular solution ynh = −2e−x to the nonhomogeneous DE (1). Finally, superimpose yh and ynh to obtain the general solution to the original DE (1) y = yh + ynh = e−2x (C1 cos(2x) + C2 sin(2x)) − 2e−x . P age 1 MAT 274 HW 3 Solutions c Bin Cheng 2. (10’) Find the general solution, using your answer from the previous problem, y 00 (x) + 4y 0 (x) + 8y(x) + 10e−x = 16x2 . (3) Solution. The homogeneous part is the same as (2) in the previous problem. So we know the homogeneous solution is also the same =⇒ yh (x) = e−2x (C1 cos(2x) + C2 sin(2x)) For the nonhomogeneous solution, “guess” ynh = ae−x + bx2 + cx + d so that 0 ynh = −ae−x + 2bx + c 00 = ae−x + 2b ynh Plug them into the nonhomogeneous DE (3) (ae−x + 2b) + 4(−ae−x + 2bx + c) + 8(ae−x + bx2 + cx + d) + 10−x = 16x2 Gather like terms on both sides (i.e. the e−x terms, the x2 terms, the x terms and the constant terms) (a − 4a + 8a + 10)e−x + 8bx2 + (8b + 8c)x + (2b + 4c + 8d) = 16x2 Equate the coef of each group of like terms e−x terms, a − 4a + 8a + 10 = 0 (4) x2 terms, 8b = 16 (5) x terms, 8b + 8c = 0 (6) constant terms, 2b + 4c + 8d = 0 (7) Solve this algebraic system for a, b, c, d (4) =⇒ a = −2 (5) =⇒ b = 2 (6) =⇒ c = −b =⇒ c = −2 1 1 (7) =⇒ d = − (2b + 4c) = 8 2 P age 2 MAT 274 HW 3 Solutions c Bin Cheng Thus, we found a particular solution ynh = −2e−x + 2x2 − 2x + 1 2 to the nonhomogeneous DE (3). Finally, superimpose yh and ynh to obtain the general solution to the original DE (3) 1 y = yh + ynh = e−2x (C1 cos(2x) + C2 sin(2x)) − 2e−x + 2x2 − 2x + . 2 3. (20’) Find the general solution to d2 y dy −8 − 9y = 0 2 dx dx and then dy d2 y −8 − 9y = 100 sin(2x). 2 dx dx Note: to accommodate the 100 sin(2x) term, (8) use a cos(2x) + b sin(2x) as your “guess” for a particular solution. Solution. Homogeneous part dy d2 y −8 − 9y = 0 dx2 dx Char. equation r2 − 8r − 9 = 0 =⇒ r = −1, 9 =⇒ yh = C1 e−x + C2 e9x “Guess” a nonhomogeneous solution ynh = a cos 2x + b sin 2x so that 0 ynh = −2a sin 2x + 2b cos 2x 00 ynh = −4a cos 2x − 4b sin 2x Plug them into the nonhomogeneous DE (8) (−4a cos 2x − 4b sin 2x) − 8(−2a sin 2x + 2b cos 2x) − 9(a cos 2x + b sin 2x) = 100 sin 2x Gather like terms on both sides (i.e. the cos 2x terms, the sin 2x terms) (−4a − 16b − 9a) cos 2x + (−4b + 16a − 9b) sin 2x = 100 sin 2x P age 3 MAT 274 HW 3 Solutions c Bin Cheng Equate coef of like terms cos 2x terms: − 4a − 16b − 9a = 0 sin 2x terms: − 4b + 16a − 9b = 100 (9) (10) To solve for a, b, first 13 a 16 Then, plug it into (10) i.e. plug into 16a − 13b = 100 (9) =⇒ b = − 13 16a − 13 − a = 100 16 =⇒ a = 1600 = 3.7647... 425 Plug this back into b = − 13 16 a b=− 1300 = −3.0588... 425 Thus, a particular, nonhomogeneous solution is ynh = 1300 1600 cos 2x − sin 2x 425 425 and the general, nonhomogemeous solution is y = yh + ynh = C1 e−x + C2 e9x + 1600 1300 cos 2x − sin 2x 425 425 P age 4
© Copyright 2026 Paperzz