COLLEGE ALGEBRA II (MATH 010) FALL 2016 ——PRACTICE FOR EXAM II(SOLUTIONS)—— 1. Find the focus and directrix of the parabola y = − 18 x2 , and sketch the graph. Solution: x2 = −8y 4p = −8, p = −2 Focus (0, −2) and Directrix y = 2. 4 3 2 1 0 −5 −4 −3 −2 −1 0 −1 1 2 3 4 5 −2 −3 −4 −5 2. Find the focus and directrix of the parabola. Sketch the graph. y 2 − 12x = 0 Solution: y 2 = 12x, 4p = 12, p = 3 Focus (3, 0) and Directrix x = −3 1 7 6 5 4 3 2 1 0 −4 −3 −2 −1 0 −1 1 2 3 4 5 −2 −3 −4 −5 −6 −7 3. Find the foci, the vertices, and the lengths of the major and minor axes of the ellipse, and sketch the graph. x2 y 2 + =1 16 9 Solution: √ √ 2 2 2 a = √ 16 = 4, b = √ 9 = 3, and c = a − b c = 7, Foci (± 7, 0) and Vertices (±4, 0). Major Axis Length: 2a = 8 and Minor Axis Length: 2b = 6 4 3 2 1 0 −5 −4 −3 −2 −1 0 −1 1 2 3 4 5 −2 −3 −4 2 4. The vertices of an ellipse are (0, ±4), and the foci are (0, ±3). Find its equation, and sketch the graph. Solution: a = 4, c = 3, and c2 = a2 − b2 or b2 = a2 − c2 = 7 2 y2 =1 Equation: x7 + 16 5 4 3 2 1 0 −4 −3 −2 −1 0 −1 1 2 3 4 −2 −3 −4 −5 5. Find the vertices, foci, and asymptotes of the hyperbola, and sketch the graph. x2 − 4y 2 = −4 Solution: √ y2 x2 Rewrite as − = 1, a = 1, b = 4 = 2, and c2 = a2 + b2 1 4 √ √ c = 5, Vertices (0, ±1), Foci (0, ± 5), y = ± ab x = ± 12 x 5 4 3 2 1 0 −5 −4 −3 −2 −1 0 −1 1 2 3 4 5 −2 −3 −4 −5 3 6. Find the equation of the hyperbola with vertices (±2, 0) and foci (±3, 0). Sketch the graph. Solution: a =√ 2, c = 3, and c2 = a2 + b2 2 2 b = 5, Equation x4 − y5 = 1 6 5 4 3 2 1 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −2 −3 −4 −5 −6 7. Complete the square to put each equation in standard form. Identify the type of conic, and its components (vertices, center, foci, asymptotes, etc.) (a) 4x2 + 9y 2 − 16x − 36y + 16 = 0 (b) x2 + 8x + 8y = 0 (c) −9x2 + 16y 2 − 72x − 96y − 144 = 0 Solution: (a) 4x2 + 9y 2 − 16x − 36y + 16 = 0 (4x2 − 16x) + (9y 2 − 36y) = −16 4(x2 − 4x) + 9(y 2 − 4y) = −16 4(x2 − 4x + 4) + 9(y 2 − 4y + 4) = −16 + 4(4) + 9(4) 4(xh − 2)2 + 9(y − 2)2 = 36 i 1 1 2 2 4(x − 2) + 9(y − 2) = 36 · 36 36 4 (x−2)2 9 2 + (y−2) =1 4 Ellipse: Center= (2, 2), vertices= (2 ± 3, 2), √ foci= (2 ± 5, 2) (b) x2 + 8x + 8y = 0 (x2 + 8x) = −8y (x2 + 8x + 16) = −8y + 16 (x + 4)2 = −8(y − 2) Parabola: Vertex= (−4, 2), focus= (−4, 0), directrix: y = 4 (c) −9x2 + 16y 2 − 72x − 96y − 144 = 0 (−9x2 − 72x) + (16y 2 − 96y) = 144 −9(x2 + 8x) + 16(y 2 − 6y) = 144 −9(x2 + 8x + 16) + 16(y 2 − 6y + 9) = 144 − 9(16) + 16(9) 16(yh − 3)2 − 9(x + 4)2 = 144 i 1 1 2 2 · 144 16(y − 3) − 9(x + 4) = 144 144 2 2 (y−3) − (x+4) =1 9 16 Hyperbola: Center= (−4, 3), Vertices= (−4, 3 ± 3), foci= (−4, 3 ± 5), asymptotes: y − 3 = ± 34 (x + 4) 5 8. Use the discriminate to identify the type of each rotated conic. (a) 13x2 + 10xy + 13y 2 − 72 = 0 √ (b) x2 − 6 3xy − 5y 2 − 8 = 0 √ √ (c) x2 + 2 3xy + 3y 2 − 8 3x − 8y − 4 = 0 Solution: (a) 13x2 + 10xy + 13y 2 − 72 = 0 A = 13, B = 10, and C = 13 B 2 − 4AC = 100 − 4(13)(13) = 100 − 676 = −576 < 0 Ellipse √ 2 (b) x2 − 6 3xy − 5y √ −8=0 A = 1, B = −6 3, and C = −5 B 2 − 4AC = 36(3) − 4(1)(−5) = 108 + 20 = 128 > 0 Hyperbola √ √ (c) x2 + 2 3xy +√3y 2 − 8 3x − 8y − 4 = 0 A = 1, B = 2 3, and C = 3 B 2 − 4AC = 4(3) − 4(1)(3) = 12 − 12 = 0 Parabola 6
© Copyright 2025 Paperzz