Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds.! ! ! ! ! ! ! ! ! ! ! ! ! Haining Wang, Xi-Jie Dai and Chao-Jun Li, Nat Chem. DOI:10.1038/nchem.2677! ! Steph McCabe! Wipf Group Current Literature 03/04/2017! ! Steph McCabe @ Wipf Group Page 1 of 15 1 3/4/2017 Strategies to Access 2° and 3° Alcohols by Carbonyl Addition ! stoichiometric [M] X R1 R2 [M] R1 R1, R2, R3, R4 = alkyl, aryl or H X = Cl, Br, I, Sn etc [M] = Mg, Li, Cu, Al, Zn, Ti etc R2 metallation O R4 R3 O R3 R2 R1 cat. L*[M]-H H R1 R2 R1 R4 R3 OH O R4 R3 R2 R4 THIS WORK N R1 [M]L* NH2 R2 N2H4 O R1 R2 hydrazone fromation metal-hydride addition R1, R2, R3, R4 = alkyl, aryl or H [M] = Ru R1, R2, R3, R4 = alkyl, aryl or H [M] = Ir, Rh, Ru, Cu, Ni, etc. 2 Steph McCabe @ Wipf Group Page 2 of 15 3/4/2017 Strategies to Access 2° and 3° Alcohols by Carbonyl Addition ! stoichiometric [M] X R1 R2 O [M] R1 R2 R3 R4 R1 R3 OH R4 R2 metallation R1, R2, R3, R4 = alkyl, aryl or H X = Cl, Br, I, Sn etc [M] = Mg, Li, Cu, Al, Zn, Ti etc Limitations: ! ! • Stoichiometric, pre-formed organometallic reagents! ! • Air & moisture sensitive! ! • Copious metal waste! ! • Pre-synthesis of organohalide substrates! ! • high nucleophilicity and basicity (= poor selectivity)! 3 Steph McCabe @ Wipf Group Page 3 of 15 3/4/2017 Strategies to Access 2° and 3° Alcohols by Carbonyl Addition ! O R2 cat. L*[M]-R R R2 R1 R1 R3 R2 R4 R1 [M]L* R4 R3 OH copper-catalysed borylative enantioselective additions S PPh2 (5 mol%) PPh2 O Me Ph CuCl (5 mol%) + O Ph Me Ph 20 mol% NaOt-Bu, 1.1 equiv. B2(pin)2 THF, 22 °C, 8 h; then NaBO3•4H2O, THF/H2O (1:1), 22 °C, 4 h HO OH HO HO Ph 76%, 98:2 dr 95:5 er O Et O O OH tylonolide JACS, 2014, 136, 11304 (Hoyveda) 4 Steph McCabe @ Wipf Group Page 4 of 15 3/4/2017 Strategies to Access 2° and 3° Alcohols by Carbonyl Addition ! O metal-hydride addition R2 H cat. L*[M]-H R1 R1 R2 R2 R4 R3 R1 [M]L* R4 R3 OH Ru-catalyzed reductive coupling Ph + HClRu(CO)(PCy3)2 (cat 6 mol%) AgOTf (9 mol%) 100 °C, 2-PrOH (300 mol%) O OH Ph Ar Ar Me ACIE, 2016, 55, 16119 (Krische) diastereoselective ketone 1,2-addition addition of enantioenriched cuprates R2 R3 + R1 1.5 equiv. O R4 1.0 equiv. Cu(OAc)2 (5 mol%) (S,S)-Ph-BPE (6 mol%) Ph Ph P P Ph Ph (MeO)2MeSiH, t-BuOH cyclohexane r.t., 12 h R2 R3 R1 4 HO R >30 examples 90-99% ee Science, 2016, 353, 144 (Buchwald) 5 Steph McCabe @ Wipf Group Page 5 of 15 3/4/2017 This Work! O N 2H 4 O R1 N R2 R1 H2O O R3 R4 R1 NH2 R1 R2 R3 OH R4 R2 hydrazone formation R1, R2 = alkyl, aryl or H L P Cl Ru P Cl R2 N H 2N R1 R3 R4 cat. [M]L* N2 R3, R4 = alkyl, aryl or H Cl R3 H L Ru P N N P O R4 R2 R1 H Cl L R3 N N Ru P P O 4 R R2 - N2 R1 R3 OH R4 R2 Zimmerman-Traxler TS 6 Steph McCabe @ Wipf Group Page 6 of 15 3/4/2017 Optimization! O O H H 2N N2H4•H2O (1.3 equiv.) Ph H THF, r.t. 30 min Ph (1 equiv.) [Ru(p-cymene)Cl2]2 (0.75 mol%) ligand (1.5 mol%) N Ph Base (25 mol%), additive (50 mol%) THF, 45 °C, 3 h, under N2 (1.2 equiv.) Entry! Ligand! Base! Additive! OH Ph Ph H Yield (%)! 1! -! K3PO4! CsF! 13! 2! dppe! K3PO4! CsF! 78! 3! dppp! K3PO4! CsF! 92! 4! dppf! K3PO4! CsF! 58! 5! dmpe! -! CsF! 3! 6! dmpe! K2CO3! CsF! 57! 7! dmpe! Cs2CO3! CsF! 51! 8! dmpe! KOtBu! CsF! 82! 9! dmpe! K3PO4! CsF! 95! 10! dmpe! K3PO4! -! 85! Ph P dppe = Ph P Ph dppp = Ph P Ph Ph P Ph Ph Ph P dppf = Fe Ph Ph P Ph dmpe = Me P Me Me P Me 7 Steph McCabe @ Wipf Group Page 7 of 15 3/4/2017 Substrate Scope: Hydrazone Precursor Carbonyl! O Me R1 N2H4•H2O (1.3 equiv.) O H R1 THF, r.t. 30 min Ph (1 equiv.) [Ru(p-cymene)Cl2]2 (0.75 mol%) dmpe (1.5 mol%) NH2 N Me R1 K3PO4 (25 mol%), CsF (50 mol%) THF, 45 °C, 3 h, under N2 H (1.2 equiv.) OH Ph H Aromatic aldehydes MeO Me O Me OH Ph OH Cl F3C Me OH Ph H 86% OH H 94% Me Me Ph 65% OH OH Cl H Ph 97% Me Ph H 85% Me O NC Me OH O H 98% Ph H Ph H 58% Cl Me OH Ph H 94% Me Me OH OH Ph H 43% Me N Me Ph OH Ph H 95% H 67% 8 Steph McCabe @ Wipf Group Page 8 of 15 3/4/2017 Substrate Scope: Hydrazone Precursor Carbonyl! O Me R1 O R2 N2H4•H2O (1.3 equiv.) NH2 N R1 THF, r.t. 30 min R2 (1.2 equiv.) Me ketones Ph (1 equiv.) [Ru(p-cymene)Cl2]2 (0.75 mol%) dmpe (1.5 mol%) K3PO4 (25 mol%), CsF (50 mol%) THF, 45 °C, 3 h, under N2 Me OH 30% (*80 °C, 20 h, K-OtBu) Me N Ph 75% Me OH Ph H H aliphatic aldehyde OH 23% (*80 °C, 20 h, , K-OtBu) OH O Ph R2 Me Me Me OH Ph Ph heterocyclic aldehydes Me R1 53% OH Ph H 20% 9 Steph McCabe @ Wipf Group Page 9 of 15 3/4/2017 Substrate Scope: Electrophilic Carbonyl! R4 N2H4•H2O (1.3 equiv.) O Ph Ph THF, r.t. 30 min NH2 N H (1.2 equiv.) O R3 (1 equiv.) R1 [Ru(p-cymene)Cl2]2 (0.75 mol%) dmpe (1.5 mol%), K3PO4 (25 mol%) CsF (50 mol%), THF, 45 °C, 3 h R4 OH R3 H aromatic ketones F3C Ph OH OH Ph Ph Et OH Ph Me OH OMe 89% Ph Me OH Ph Me OH 93% 93% 65% Ph Me OH Ph HO Ph OH Br I F p-Br, 86% o-Br 71% 79% 84% 76% 70% heterocyclic ketones Ph Me OH O 80% 10 Steph McCabe @ Wipf Group Page 10 of 15 3/4/2017 Substrate Scope: Electrophilic Carbonyl! O R4 Ph O N2H4•H2O (1.3 equiv.) Ph THF, r.t. 30 min R3 NH2 N H (1.2 equiv.) (1 equiv.) R1 [Ru(p-cymene)Cl2]2 (0.75 mol%) dmpe (1.5 mol%), K3PO4 (25 mol%) CsF (50 mol%), THF, 45 °C, 3 h R4 OH R3 H aliphatic ketones Ph HO Ph Me OH 88% Ph Me OH OMe 55% Ph Me HO Ph 85% 71% Ph OH Ph Me 56% OH Me 82% Et OH Et 50% Ph Me OH n-C5H11 75% 11 Steph McCabe @ Wipf Group Page 11 of 15 3/4/2017 Substrate Scope: Electrophilic Carbonyl! R4 N2H4•H2O (1.3 equiv.) O Ph Ph THF, r.t. 30 min O R3 NH2 N (1 equiv.) R1 [Ru(p-cymene)Cl2]2 (0.75 mol%) dmpe (1.5 mol%), K3PO4 (25 mol%) CsF (50 mol%), THF, 45 °C, 3 h H (1.2 equiv.) R4 OH R3 H labile functionality tolerated Ph Me OH OMe N Me O 77% Ph Me OH OMe 88% O Ph Ph O OH N H 85% Ph Me OH OH Ph 50% complex natural product H H Ph OH H H 68% 12 Steph McCabe @ Wipf Group Page 12 of 15 3/4/2017 Substrate Scope: Electrophilic Carbonyl! O Ph O Ph N2H4 in THF (1.0 M) r.t. 30 min R3 NH2 N H (1 equiv.) R1 [Ru(p-cymene)Cl2]2 (1.5 mol%) dmpe (12 mol%), K3PO4 (25 mol%) CsF (50 mol%), DMSO, t-BuOH, 120 °C, 6 h H OH R3 H aromatic/aliphatic aldehydes OH OH Ph Ph 48% OH Et Ph 61% Et Ph n-C7H15 50% 13 Steph McCabe @ Wipf Group Page 13 of 15 3/4/2017 Asymmetric Variant! O Ph (1 equiv.) Ph O N2H4•H2O THF, r.t., 30 min Ph NH2 N [Ru(COD)Cl2]n (1.5 mol%) L1(1.5 mol%), L2 (1.5 mol%) Ph K3PO4 (25 mol%),THF, 50 °C, 4 h OH Ph 52% yield 76:25 er Ph Ph P Me P Ph Ph (S,S)-Ph-BPE L1 H 2N NH2 Ph Ph (S,S)-DPEN L2 14 Steph McCabe @ Wipf Group Page 14 of 15 3/4/2017 Conclusions! O N 2H 4 O R1 N R2 R1 H2O R1, R2 = alkyl, aryl or H R3 R4 cat. [M]L* NH2 R1 R2 R3 OH R4 R2 hydrazone formation N2 R3, R4 = alkyl, aryl or H • Hydrazones act as carbanion equivalents for Ru-‐catalyzed carbonyl 1,2-‐addiBons to aldehydes and ketones to yield 2° and 3° alcohols • Green alternaBve to classic methods that uBlize stoichiometric organometallic reagents • Hydrazones can be derived from naturally-‐occurring aldehydes and ketones • Excellent chemoselecBvity • Broad funcBonal group tolerance • ReacBon scope largely features at least one aromaBc carbonyl partner • ReacBon moderately enanBoselecBve 15 Steph McCabe @ Wipf Group Page 15 of 15 3/4/2017
© Copyright 2026 Paperzz