3.9: DERIVATIVES OF EXPONENTIAL & LOGARITHMIC FUNCTIONS HOMEWORK: 3-42 MULT OF 3, 43-46 Warm-up: Using the definition of a derivative, find the derivative of d Xth - . (eX) ~ \Im e dx h~O -= IHl\ h~O - tX h e~· eh - tx h 1 Derivative of eX d du dx dx -ell = e ll - Examples: (a) d) d~ (t 3>. t I) : e3x t I " 3 -- 3e 3x t I y = e 3x + 1 (b) Y = e s inx 6 ) e SIr\)< d dX (e Slnx) =e S1nx "cosx 2 Derivative of aX - d du -(aU) = aU lna dx dx (a is a constant) Examples: (a) y = 3cotx (b) y = S2X-2 b) ! (5 = ZX- 2 ) S2x- 2 \\\5 ° 2 3 Derivative of In x d 1 du -lnu = - dx u dx Examples: (a) J) d ~ (It) (1x-l) - \ 1A -I ;; ) ·1 y = In(4x - 1) (b) y = In (cos x) b) d ( . dx in I(Os).) ) - -- loS X ,;; - SlhX i 4- x-I -- -Sln)( (OSX == -tanx 4 Derivative of loga x d dx loga U = du U In a dx 1 Examples: (a) y = [oglOe X (b) y = log(3x d~ { lo~ (3X i I) ) b) - :; + 1) I (c) Y = logs..Jx c) ~~ \C9s-rx ~:: \~ S X'/1 -(3Xt ,) Ih ID- · 3 ~:: ~ . \O~ 5 ~ 3 -(3X1"I) -In 10 i'=l~l ' l 2 ~I ~ X \r{) ___ , _ 2x IV) 5 ~ I:: I • I --IX \h5 2{X :: 2x InS 5 Rules of log's & In's that may be useful•••. • e 1nx =x 6 Extra Practice Problems: 2x 3. y = e3 2 . y = eX Inx 1. rf:ODU(T KULE U-=-X 1 v-:.e x \J I ~ 2>< Vi ~ eX 2. rRoDuC1 k'u lE. UI = eX \j=-e ). v -: Inx V'-;:_I - ~2e x t 2xe x -- 'f..e" (x t2) ::. ~ X. 1 e),lnx '" , e (~ t Inx) 1 e-;)\ .2 3 =z 3 ~ 'JI ~" 7 Extra Practice Problems: 10 5. Y = In(4x) 4. Y = In-;- 4- . \D \0 - \nx ! ( \\\10 - Inx) dX ~ 0 -~ 5 . \n id~ (\n~ i \n x) ~ A ~ - \ X (~x) -= 01 .l. X I ~. ~~ 9X idx (f) -;g~\n~ ' 1 = 9A\fI ~ X 8 Harder Practice Problems: 10. y=xX . ~ X \0. ~:: 1n~ <1\ tnX ldl;; ~~ .~ t\Y\x . \ ~ (:\x 'A - I dlA _J J dx ~~ 0 ~ \ -t \ 3 2 '2 I cl~ _ '2'J. + --- 3- ~ dx - X~t I 2(3Xt1) - 5(2x-4) nx (Itlhxl~ 9
© Copyright 2025 Paperzz