MAT2013 Mathematical Statistics: Formula Sheet Discrete Distributions Distribution Mass function Ranges of variables Mean and Variance Uniform (N ) 1 N N = 1, 2, . . . N +1 2 x = 1, 2, . . . , N N 2 −1 12 0 ≤ π ≤ 1, π r = 0, 1 π(1 − π) 0 ≤ π ≤ 1, n = 1, 2, . . . nπ r = 0, 1, . . . n nπ(1 − π) λ>0 λ r = 0, 1, 2, . . . λ 0<π≤1 1 π n = 1, 2, . . . (1−π) π2 0 < π ≤ 1, k > 0 k π x = k, k + 1, . . . k(1−π) π2 n1 , n2 , m = 1, 2, . . . n1 m n1 +n2 x = 0, 1, ..., min(n1 , m) n1 n2 m(n1 +n2 −m) (n1 +n2 )2 (n1 +n2 −1) 0 ≤ πj ≤ 1, m = 1, 2, . . . mπj π r (1 − π)1−r Bernoulli (π) Binomial (n, π) n r π r (1 − π)n−r e−λ λr r! Poisson (λ) (1 − π)n−1 π Geometric (π) Negative Binomial (k, π) x−1 k−1 n2 (nx1 )(m−x ) n1 +n2 ( m ) Hypergeometric (n1 , n2 , m) Multinomial (k, m, π) π k (1 − π)x−k m x π1x1 π2x2 · · · πkxk xj = 0, 1, . . . , m, Pk j=1 xj = m m(δjk πj − πj πk ) MAT2013 Mathematical Statistics: Formula Sheet Continuous Distributions Distribution Density function Ranges of variables Mean and Variance 1 β−α −∞ < α < β < ∞ α+β 2 a<x<b (β−α)2 12 λ>0 1 λ x>0 1 λ2 −∞ < µ < ∞, σ > 0 µ −∞ < x < ∞ σ2 α > 0, β > 0 α β x>0 α β2 α > 0, β > 0 α α+β 0<x<1 αβ (α+β)2 (α+β+1) −∞ < µj < ∞, Σ > 0 µj −∞ < xj < ∞ Σjk ν = 1, 2, . . . ν u>0 2ν ν>0 µ = 0, ν > 1 Uniform (α, β) λe−λx Exponential (λ) √1 e− σ 2π Normal (µ, σ 2 ) (x−µ)2 2σ 2 β α xα−1 exp(−βx) Γ(α) Gamma (α, β) st Γ(α) = (α − 1)! xα−1 (1−x)β−1 B(α,β) Beta (α, β) Γ(α)Γ(β) Γ(α+β) st B(α, β) = Multivariate normal for α ∈ N 1 |2πΣ|−1/2 e− 2 (x−µ) T Σ−1 (x−µ) (µ, Σ) t(ν) 1 2 2 ν Γ( 12 ν) 1 1 2 1 B( 21 , ν2 )ν 2 (1+ tν ) 2 (ν+1) F (ν1 , ν2 ) 1 1 u 2 ν−1 e− 2 u χ2 (ν) B( ν1 ν2 1 ν1 2 −∞ < t < ∞ ν , ν−2 ν>2 ν1 , ν2 = 1, 2, . . . ν2 , ν2 −2 ν2 > 2 x>0 2ν22 (ν1 +ν2 −2) , ν1 (ν2 −2)2 (ν2 −4) 1 x 2 ν1 −1 ν1 ν2 ν x 1 , )(1+ ν1 ) 2 (ν1 +ν2 ) 2 2 2 ν2 > 4 Some Useful formulae 1. The pgf of Poisson(λ) is e−λ(1−z) . 2. The mgf of N(µ, σ 2 ) is exp(µz + σ 2 z 2 /2). 3. The mgf of gamma(α, β) is (1 − βz )−α . 4. The Cauchy Schwartz inequality states that for any two random variables X, Y , [E(XY )]2 ≤ E(X 2 )E(Y 2 ). 5. Chebyshev’s inequality states that for a random variable Y with mean µ and finite variance σ 2 , P (|Y − µ| ≥ a) ≤ σ 2 /a2 , for all a > 0. 6. Exponential series formula: ex = xn n=0 n! . P∞ 7. Where needed you may use that for λ > 0, R∞ 0 ue−λu = 1/λ2 .
© Copyright 2025 Paperzz