Radical Cations•+: Generation, Reactivity, Stability R A R MacMillan Group Meeting 4-27-11 by Anthony Casarez A Three Main Modes to Generate Radical Cations Chemical oxidation D A D A Photoinduced electron transfer (PET) 1) D A 2) D A h! h! D A* D A D* A D A Electrochemical oxidation (anodic oxidation) D Anode D Chemical Oxidation Stoichiometric oxidant: SET O O Me Me N Bn N N t-Bu Ce(NH4)2(NO3)6 Bn DME H t-Bu H hexyl Me3SiO O N hexyl FeCl3, DMF Me3SiO MacMillan et al. Science 2007, 316, 582. Booker-Milburn, K. I. Synlett 1992, 809. Photoinduced Electron Transfer PET: Organic arene CN NC CN OMe OMe h!, MeCN, MeOH CN PET: Metal mediated h!, MgSO4, MeNO2, Ru(bpy)32+ MeO R MeN NMe MeO R Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931. Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572. Electrochemical Oxidation Anodic oxidation Me O Me O anode, MeOH DCM, NaClO4 2,6-lutidine MeO MeO N N H CO2Me N anode, 2,6-lutidine Et MeCN, Et4NClO4 N H CO2Me Et Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463. M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496. Primary Fate of Radical Cations Key Points A radical cation will be generated from the electrophore on the molecule with the lowest oxidation potential (usually π or n, where n = nonbonding electrons). The chemistry of the resultant radical cation is determined from the functionality around its periphery. Deprotonation of the radical cation is a major pathway, resulting in a radical which adheres to typical radical reactivity patterns. Secondary reactions play a major role in our generation and use of radical cations. Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or π-A+ + B• A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or π-A+ + B• A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Thermochemical Cycle: Calculating pKaʼs R-H !G[pKa(RH•+)] R• + H+ Eox(R–) Eox(RH) R-H !G[pKa(RH)] R– + H+ ΔG = –nF[Eox(RH) – Eox(R–)] pKa(RH•+) = ΔG/2.303RT Nicholas, A. M. de P.; Arnold, D. R. Can. J. Chem. 1982, 60, 2165. Deprotonation Acidity of a radical cation is severely increased compared to the neutral counterpart. H H H H H H–B+ B R-H pKa (π-RH•+) pKa (π-RH) reference PhCH2CN –32 21.9 a PHCH2SO2Ph –25 23.4 b Ph2CH2 –25 32.2 c PhCH3 –20 43 c indene (3-H) –18 20.1 d CpH –17 18.0 c,e fluorene (9-H) –17 22.6 f C5Me5H –6.5 26.1 e a) Bordwell et al. J. Phys. Org. Chem. 1988, 1, 209. b) Bordwell et al. J. Phys. Org. Chem.1988, 1, 225. c) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1989, 111, 1792. d) Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc. 1992, 114, 10173. e) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1988, 110, 2872. f) Bordwell, F. G.; Cheng, J.-P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867. Deprotonation Ph Me O H N N B Me R-H Me Ph O N N Me H–B+ pKa (RH•+) pKa (RH) –13 27.9 –11 27.0 –11 24.4 Me O H Ph N N Me Et O H Ph N N Et O O N Ph 2 H Bordwell, F. G.; Zhang, X. J. Org. Chem. 1992, 57, 4163. Secondary Reactions Secondary Reactions play a major role in “radical cation” chemistry. Code Secondary Rxn Product Oxidation System R•ox R• R+ cation anode, chemical R•red R• R– anion PET various all R•rad typical radical behavior R•add.ox R• + C=C R–C–C• R–C–C+ cation anode, chemical R•add.red R• + C=C R–C–C• R–C–C– anion PET anion PET R•RA R• + R•– R–R•– Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. π-RH•+ Deprotonation π-RH•+ deprotonation followed by a secondary reactivity pathway (benzylic radical) Me O anode, MeOH DCM, NaClO4 2,6-lutidine 95% MeO Me O Me O anode B H MeO MeO B Me O H MeO MeO Me O MeOH Me O MeO MeO MeO Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463. Determining n vs π Electrophores Consider the ionization potential of the separate n- and π- moieties H N H 7.69 eV NH3 9.24 eV 10.17 eV Me N Me HNMe2 7.17 eV 9.24 eV 8.24 eV Oxidation with typically take place at the center with the lower ionization potential Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. H. M. Rosenstock et al. J. Phys. Chem. Ref. Data 1977, 6, Suppl. 1. n-RH•+ Deprotonation n-RH•+ deprotonation followed by a secondary reactivity pathway (α-amino radical) Me N Me N anode, MeOH Me OH KOH, 73% H H H n donor Me N OMe Me Me N N H H OMe T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753. n-RH•+ Deprotonation Typical arene oxidation products are observed H2N H N NH2 H H anode N H H N NH2 ! donor N N Observation of these products indicates that the arene is the site of oxiation, not N-lone pairs T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753. σ-CH•+ Deprotonation Deprotonation of the radical ion pair happens by the solvent NC CN NC CN h!, 81% MeCN H NC CN NC CN MeCN Albini et al. J. Chem. Soc. Chem. Commun. 1995, 41. σ-CH•+ Deprotonation Deprotonation of the radical ion pair happens by the solvent NC CN NC CN NC CN NC CN CN NC CN CN NC CN h!, 81% MeCN H MeCN Adm CN NC Adm NC CN NC Albini et al. J. Chem. Soc. Chem. Commun. 1995, 41. π-AH•+ Deprotonation π-OH•+ deprotonation is very prevalent while π-NH•+ deprotonations are rare. anode, MeOH HO O OMe MeCN, 69% Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron 1991, 47, 655. π-AH•+ Deprotonation π-OH•+ deprotonation is very prevalent while π-NH•+ deprotonations are rare. anode, MeOH MeCN, 69% HO HO O MeCN HOMe O OMe –H+ O O Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron 1991, 47, 655. π-AH•+ Deprotonation Reaction at the ortho-position can also occur OH TEMPO-modified anode OH (–)-sparteine, 91% OH 98% ee Implementing a biased substrate forces reaction at the ortho-position T. Osa et al. J. Chem. Soc. Chem. Commum. 1994, 2535. n-AH•+ Deprotonation: Very Limited The details surrounding the cycloaddition below are speculative at best. Ph N H NHPh Th•+ ClO4– MeCN Ph N NHPh –2H+ H N –e– Me N Ph NPh N Me The limited examples show how rare these deprotonations are Shine, H. J.; Hoque, A. K. M. M. J. Org. Chem. 1988, 53, 4349. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. π-A-B•+ Bond Dissociation Dienolether has a lower oxidation potential than the enolether Me3Si O Ce(NH4)2(NO3)6 OTMS O MeCN, 77% Me O –e– –SiMe3+ –e– SiMe3+ Me3Si O Me H OTMS O O CH2 Me H H Me OTMS Eventhough [O] may happen at n (lone pairs), the resonance structure affords the π-oxidized product. Ruzziconi et al. Tetrahedron Lett. 1993, 34, 721. π-A-B•+ Bond Dissociation Certain Mukaiyama–Michael reactions are postulated to operate via a radical cation initiated fragmentation O OTES Me Me Ph OTES OEt Me OEt Me O Me LA DCM , –78 °C Me O Ph OEt Me Lewis Acid 4°–4° product 4°–2° product Product ratio Bu2Sn(OTf)2 85 0 100:0 SnCl4 95 0 100:0 Et3SiClO4 93 0 100:0 TiCl4 97 2.4 97:3 Me J. Otera et al. J. Am. Chem. Soc. 1991, 113, 4028. Mukaiyama–Michael Proposed Catalytic Cycle Et3SiO Me catalyst regeneration Me O Ph SnCl4 OEt Me Me O Ph Me Me Et3SiCl Cl3Sn R•–R• coupling Ph O O Me Me Me SnCl4 O OEt Me complexation Me Ph Me SnCl3 O Et3SiCl Ph Cl– Me Me OTES Me OEt OTES Me OEt Me Me e– transfer J. Otera et al. J. Am. Chem. Soc. 1991, 113, 4028. n-A-B•+ Bond Dissociation Limited mostly to azoalkanes and triazines Me Me OH Me OH h!, DCA N N2 N Ph2 N OH N Me Me Me Me Me BET OH O Me Me Adam, W.; Sendelbach, J. J. Org. Chem. 1993, 58, 5316. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. π-C-C•+ Bond Dissociation Fragmentation of a β-ether generates an oxocarbenium ion MeO MeO MeO NC HOMe CN h!, MeCN, MeOH MeO OMe –H+ H+ DCB Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931. Stereoelectronic Effects in Deprotonation and Fragmentation Deprotonation Fragmentation Ph OMe H h!, DCB R N.R. collidine, MeCN Me H R O Me H H h!, DCB H Ph collidine, MeCN Me Ph Me Ph Me H O "* R Poniatowski, A.; Floreancig, P. A. In Carbon-Centered Free Radicals and Radical Cations; Forbes, M. E., Ed.; Wiley & Sons: New Jersey, 2010; Vol 3., pp 43-60. D. R. Arnold et al. Can. J. Chem. 1997, 75, 384. π-C-C•+ Bond Dissociation Nucleophile assisted C–C bond fragmentation with complete inversion of stereochemistry HOMe Ph Me Ph D h!, 1-CN Ph Me MeCN, MeOH Ph D –H+ Ph OMe Ph Me D 1-CN H+ Ph OMe Ph Me D Nucleophile assisted π-C-C•+ fragmentation is limited to strained systems Dinnocenzo et al. J. Am. Chem. Soc. 1990, 112, 2462. n-C-C•+ Bond Dissociation To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical must be stabilized by a moiety on the molecule anode, 2,6-lutidine N N H CO2Me N MeCN, Et4NClO4 Et N H N CO2Me N H Et Et CO2Me –e– N Et N NaBH4 H N H V CHO2Me N N N H V CO2Me Et N CO2Me Et Et N H MeO2C OH Me AcO OMe M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496. n-C-C•+ Bond Dissociation To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical must be stabilized by a moiety on the molecule anode, 2,6-lutidine N N H CO2Me N MeCN, Et4NClO4 Et N H N CO2Me N H Et Et CO2Me –e– N Et N NaBH4 H N H V CHO2Me N N N H V CO2Me Et N CO2Me Et Et N H MeO2C OH Me AcO OMe M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496. n-C-C•+ Bond Dissociation TCB Me OH O Me O TCB, h! O RSH, H2O, 90% AcO O AcO Easily oxidized acetal Me TCB O Me O O AcO AcO H2O O A. Albini et al. Tetrahedron Lett. 1994, 50, 575. σ-C-C•+ Bond Dissociation Cl Cl3Fe Me3SiO FeCl3, DMF Me3SiO –SiMe3 O H H 64% H ESR studies on strained systems show that the inner C-C bond is selectively weakened Trapping of the pendant olefin and Cl• abstraction form the bicycle Booker-Milburn, K. I. Synlett 1992, 809. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. π-C-X•+ Bond Dissociation: Calculated BDEʼs Aromatic ionization severely weakens the adjacent bond by ~30 kcal/mol on average Si and Sn are the most common X-groups used as fragmentation substrates ΔHR(p-C-X•+) BDE kcal/mol ΔHR(p-C-X) BDE kcal/mol Ref PhCH2• + Me3Si+ +30 +77 a PhCH2–Cl•+ PhCH22+ + Cl• +40 +72 b PhCH2–Br•+ PhCH22+ + Br• +26 +58 b PhCH2–OMe•+ PhCH22+ + •OMe +43 +71 b PhCH2–SMe•+ PhCH22+ + •SMe +38 +61 b PhS• + Xan+ –11 +26.4 c –18.6 +40.3 c Reaction PhCH2–SiMe3•+ PhS–Xan•+ PhS–TPCP•+ PhS• + TPCP+ Xan = 9-xanthyl; TPCP = 1,2,3-triphenylcyclopropenyl a) J. P. Dinnocenzo et al. J. Am. Chem. Soc. 1989, 111, 8973. b) Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. c) E. M. Arnett el al. J. Am. Chem. Soc. 1992, 114, 221. π-C-X•+ Bond Dissociation R3Si– and R3Sn– moieties can be used as “super protons” The dependence of k on MeOH, H2O, Bu4NF indicates Nu-assisted Si-bond cleavage SiMe3 anode, Et4NOTs OMe MeOH, 91% J. Yoshida et al. Tetrahedron Lett. 1986, 27, 3373. P. S. Mariano et al. J. Am. Chem. Soc. 1984, 106, 6439. π-C-X•+ Bond Dissociation R3Si– and R3Sn– moieties can be used as “super protons” The dependence of k on MeOH, H2O, Bu4NF indicates Nu-assisted Si-bond cleavage ClO4– N Me SiMe3 h!, MeCN anode, Et4NOTs SiMe3 OMe MeOH, 91% N Me SiMe3 –Me3 Si+ N Me 70% Me Iminium salts can act as photooxidants under PET conditions N J. Yoshida et al. Tetrahedron Lett. 1986, 27, 3373. P. S. Mariano et al. J. Am. Chem. Soc. 1984, 106, 6439. n-C-X•+ Bond Dissociation Iminium ion used in the “cation pool” method is generated via n-C-X•+ cleavage N Bn4NBF4, DCM SiMe3 BF4– anode, –78 °C CO2Me N CO2Me –e– –F N SiMe3 CO2Me N CO2Me F– assisted C–Si bond cleavage J. Yoshida et al. J. Am. Chem. Soc. 2005, 127, 7324. π-C-X•+ Bond Dissociation “Cation pool” oxidizes benzylsilane directly OMe BF4– N DCM, –50 °C Me3Si OMe CO2Me 88% N CO2Me 1.35 V vs SCE Oxidation potential of benzylsilane must be <1.5 V, otherwise a catalytic benzylstannane can be added to initiate the reaction Me BF4– N DCM, –50 °C Me3Si Me CO2Me 12% N CO2Me 1.55 V vs SCE J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902. π-C-X•+ Bond Dissociation “Cation pool” oxidizes benzylsilane directly OMe BF4– N DCM, –50 °C Me3Si N 88% OMe CO2Me CO2Me 1.35 V vs SCE Oxidation potential of benzylsilane must be <1.5 V, otherwise a catalytic benzylstannane can be added to initiate the reaction Me BF4– N DCM, –50 °C Me3Si N 97% Me CO2Me CO2Me 1.55 V vs SCE Bu3Sn 10 mol% Me J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902. Proposed Mechanism Initiation Me3Si OMe BF4– N N CO2Me CO2Me OMe Me3Si N Me3Si+ CO2Me OMe Me3Si OMe Propagation Propagation OMe Stronger oxidant than iminium ion N CO2Me BF4– N CO2Me OMe J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902. n-C-X•+ Bond Dissociation SiMe3 N DCN, h! H i-PrOH, 90% N Me 97:3 dr O hexyl N O OMe DCA, h!, 67% hexyl N OMe MeCn/MeOH SiMe3 O N O O Me SiMe3 O N N O Me H O Bn DCA, h! O MeCN, 59% O N N Bn O N O Pandy, G.; Reddy, G. D. Tetrahedron Lett. 1992, 33, 6533. Steckhan et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 2137. Mariano et al. J. Org. Chem. 1992, 57, 6037. σ-C-X•+ Bond Dissociation ClO4– N h!, 42% Ph SiMe3 N MeCN Me Ph CO2Me –Me3Si+ N Ph SiMe3 Me Coupling of the radical cation to the oxidant is the prominent primary fate after σ-C-X•+ cleavage CN SiMe3 NC h!, 66% MeCN NC Mariano P. S.; Ohga, K. J. Am. Chem. Soc. 1982, 104, 617. Otsuji et al. Tetrahedron Lett. 1985, 26, 461. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Nu-π-A-B•+ Moeller en route to (–)-alliacol A O OTBS Me Me anode, LiClO4 Me TBSO Me Me 2,6-lutidine MeOH/DCM, 88% O H Me TBSO O Trauner en route to (–)-guanacastepene E Me Me Me Me TBDPSO O OBn TBSO Me Me Me anode, LiClO4 2,6-lutidine MeOH/DCM, 81% H Me TBDPSO O MeO OBn H O Mihelcic, J.; Moeller, K D. J. Am. Chem. Soc. 2004, 126, 9106. Trauner et al. J. Am. Chem. Soc. 2006, 128, 17057. Nu-n-A-B•+ anode THF, H2O NaBF4, 70% Me Me NHOAc H2O OH NOAc –H+ NOAc –H+ –e– Me NHOAc Me H NOAc Me The authors do not rule out the possibility of olefin oxidation as an alternative mechanism Karady et al. Tetrahedron Lett. 1989, 30, 2191. Nu-n-A-B•+ N AcOH N PTOC Me t-BuSH, 60% O PTOC = S O N Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163. Nu-n-A-B•+ N AcOH N PTOC Me t-BuSH, 60% H NH N –H+ HSR Initially formed nitrene is immediately protonated Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Cycloaddition Experimental kinetic data for radical cation cycloadditions (rt) Reaction p-An p-An k [M–1s–1] comments reference 3 x 108 Mostly [4 + 2] endo adduct; ratio of/to [2 + 2] varied by concentration a, b <6.7 x 107 1) [2 + 2] terminated by C-H•– deprotonation 2) concerted reaction b Me Me p-An 1) 1.4 x 109 2) 1.4 x 109 3) 1 x 1010 p-An p-An p-An Me 1) concerted cycloaddition assumed 2) distonic 1,4-radical cation intermediate c,d 7 x 108 21% Diels–Alder adduct e 1.5 x 106 80% Diels–Alder adduct e a) Calhoun, G. C.; Schuster, G. B. J. Am. Chem. Soc. 1984, 106, 6870. b) Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157. c) Takamuku et al. J. Org. Chem. 1991, 56, 6240. d) Schepp, N. P; Johnston, L. J J. Am. Chem. Soc. 1994, 116, 6895. e) Schepp, N. P; Johnston, L. J J. Am. Chem. Soc. 1994, 116, 10330. Diels–Alder [4 + 2] Cycloaddition Shown to operate via a cation radical chain mechanism H DCM, 70% Ar3N –SbCl H 5 5:1 endo/exo Suprafacial selectivity observed k = 3 x 108 [M–1s–1] DP + Ar3N•+ Ar3N + DP•+ DP•+ + D A•+ A•+ + DP 2DP•+ DP•+ A + DP•+ dication Propagation Termination H+ + DP• Bauld et al. J. Am. Chem. Soc. 1981, 109, 3163. Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157 Diels–Alder [4 + 2] Cycloaddition Shown to operate via a cation radical chain mechanism H DCM, 70% Ar3N –SbCl H 5 5:1 endo/exo H H Initiator Ar3N H H Propagator Bauld et al. J. Am. Chem. Soc. 1981, 109, 3163. Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157 [2 + 2] Cycloaddition Photoredox catalyzed radical cation formation MeO h!, MgSO4, 88% MeNO2, Ru(bpy)32+ MeO MeN O NMe H H O Concerted cycloaddition MeO –e– +e– O Electron donating substituent on the arene is necessary to promote the initial oxidation Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572. [2 + 2] Cycloaddition Stereoconvergent transformation OMe MeO h!, MgSO4, 71% MeNO2, Ru(bpy)32+ H O MeN H NMe O 6:1 dr isomerization > cycloaddition MeO MeO h!, MgSO4, 82% MeNO2, Ru(bpy)32+ O H MeN H NMe O 5:1 dr Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Claisen Rearrangement: A Representative Example Though potentially powerful, the radical cation Claisen rearrangement has found very limited use in synthsis OMe OMe O MeO • MeCN, 65% Ar3N –SbCl 5 OH MeO The radical cation Cope rearrangement seems to be limited to aryl substituted systems. Venkatachalam et al J. Chem. Soc Chem. Commun. 1994, 511. Primary Fate of Radical Cations Both radical (Rad) and radical anion (RA) have been previously discussed Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Primary Fate of Radical Cations Symbol Classification CH C–H deprotonation AH A–H deprotonation AB Primary Product A B C H π-A• + H+ O, N, S, X H A–B bond cleavage π-A• + B+ or n-A• + B+ A B CC C–C bond cleavage π-C• + C+ C C CX C–X bond cleavage π-C• + X+ C Si, Sn Nu Nu attack Nu-π-A-B•+ A B CA cycloaddition cycloaddition A B R rearrangement rearrangement A B ET electron transfer π-A-B or π-A-B2+ A B Rad radical attack R-π-A-B+ A B RA radical anion attack RA-π-A-B A B H hydrogen transfer H-π-A-B+ A B Dim dimerization (π-A-B)22+ A B π-C• + H+ or n-C• + H+ Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. Hydrogen Transfer The Hofmann–Löffler–Freytag reaction N–C homolysis NCS, ether NH N N NEt3, h!, quant H N N H N H Cl H• abstraction N N –H+ SN2 ring closure N H N –H+ H N H N Cl Cl• Typically a 1,5-H-atom abstraction Kimura, M.; Ban, Y. Synthesis 1976, 201. Hydrogen Transfer HO N The Hofmann–Löffler–Freytag reaction Me NCS, DCM NH OH N Cl 0 °C, 85% Me Me Me N Me Me Cl Me hν, TFA KOH, EtOH 39% N Me Intermediate en route to the synthesis of kobusine Kimura, M.; Ban, Y. Synthesis 1976, 201. Radical Cations in Synthesis: Floreancig Lab Epoxonium cyclization Bn O OMe Me O Me O Ot-bu O Me O h!, NMQPF6, O2 NaOAc, Na2S2O3 DCE, PhMe, 79% O MeO H O O O Me H Cyclic acetal formation en route to theopederin D MeO OMe O O Me O CbzHN Bn H h!, NMQPF6, NaOAc, Na2SO3 Me Me OMe O DCE, PhMe, 76% O Me CbzHN O O O H 2:1 dr OMe O Houk and Floreancig et al. J. Am. Chem. Soc. 2007, 129, 7915. Floreancig et al. Angew. Chem. Int. Ed. Engl. 2008, 47, 7317. Radical Cations in Synthesis Used in Moellerʼs synthesis of nemorensic acid Me Me S Me OH Me S anode, 71% Et4NOTs MeOH/THF Me S Me O MeO S Bogerʼs synthesis of vinblastine N OH N N H CO2Me Et i. FeCl3, 2h N Et MeO N Et OAc H Me HO CO2Me ii. Fe2(ox)3–NaBH4 air, 0 °C, lutidine 43% H N N H MeO2C MeO Et N OAc H Me HO CO2Me Moeller et al J. Am. Chem. Soc. 2002, 124, 10101. Boger et al J. Am. Chem. Soc. 2008, 130, 420. Radical Cations in Synthesis: MacMillan Lab O O R H R' H R R' !-arylation O !-enolation SOMO-activated O O Me O N R' R' H H Bn intramolecular !-arylation O t-Bu N H R R !-vinylation O NO2 H R' R !-nitroalkylation H R R' !-allylation
© Copyright 2026 Paperzz