Testing quantum physics in space using high-mass matter-wave interferometry Rainer Kaltenbaek* *MAQRO Consortium Quantum superposition Which slit does each particle “really” go through? A particle does not pass either through one slit or the other The path of a particle is not real. From J. D. Norton, Universtiy of Pittsburgh Does that hold true for massive objects? Does Quantum Mechanics fail for large/massive systems? When do things Become “real”? 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 2 Beyond quantum theory? • Inherent transition from quantum to classical • Modification of Schrödinger equation decoherence even for isolated systems “collapse” models: • F. Károlyházy, Nuovo Cimento A 52, 390 (1966) • L. Diósi, PRA 105, 199 (1984) • R. Penrose, e.g., Gen. Rel. Grav. 28, 581 (1996) • Ghirardi, Rimini & Weber, PRD 34, 470 (1986) • Continuous sponataneous localization (CSL), Ghirardi, Pearle & Rimini, PRA 42, 78 (1990) • Ellis, Mohanty, Nanopoulos, Phys. Lett. B 221, 113 (1989) Effects of quantum gravity for high masses? Gravitational decoherence: • Metric fluctuations due to grav. wave background, A. Lambrecht, S. Reynaud & others • Decoherence due to grav. redshift, I. Pikovski, C. Brukner & others • Metric fluctuations due to quantum gravity (space-time foam), C. Lämmerzahl & others Unfortunately beyond MAQRO 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 3 Experimental tests? Matter-wave interferometry Current mass record – 104 amu S. Eibenberger et al., PCCP 15 (35), 14696 (2013) Quantum Optomechanics Disadvantage: coupling to environment via support. G. D. Cole et al., Appl. Phys. Lett. 92, 261108 (2008) 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 4 Optically trapped nanospheres • optically trapped dielectric spheres • combine optical-tweezer technology (A. Ashkin, PRL 24, 147 (1970)) with optomechanics and atom-trapping toolbox D. E. Chang et al., PNAS 107, 1005 (2010) 24.03.2015 O. Romero-Isart et al., New J. Phys. 12, 033015 (2010) O. Romero-Isart et al., PRA 83, 013803 (2011) Moriond, La Thuile, R. Kaltenbaek 5 Matter-wave interference with nanospheres Ground-based experiments O. Romero-Isart , A. Pflanzer et al., PRL 107, 020405 (2011); O. Romero-Isart, PRA 84, 052121 (2011) J. Bateman, S. Nimmrichter, K. Hornberger, H. Ulbricht, Nature Comm. 5, 4788 (2014) 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 6 Limitations for ground-based experiments • free-fall times (~ 10s) • statistics • quality of micro-gravity (also vibrations) limited to ≲ 108 amu only limited tests of CSL model For more general tests: • higher mass • longer free-fall times • very good vacuum • cryogenic temperatures Case for Space – MAQRO 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 7 Near-field vs. far-field interferometry original MAQRO approach: near-field interferometry alternative: Talbot (near-field) interference Advantages: • Established matter-wave interferometry technique • High interference visibility possible • “Reasonable” wavelengths (1064nm, 200nm) Disadvantages: • Classical “interference” fringes (shadowing) • Narrow fringe spacing – hard requirements on thruster force noise and/or accelerometers 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 8 Classical vs QM visibility Talbot (near-field) interference – based on work by J. Bateman et al. J. Bateman, S. Nimmrichter, K. Hornberger, H. Ulbricht, Nature Comm. 5, 4788 (2014) 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 9 Adapting this for MAQRO Perform matter-wave interferometry – one particle at a time cool 24.03.2015 expand phase grating Moriond, La Thuile, R. Kaltenbaek wait, then measure 10 Adapting this for MAQRO Perform matter-wave interferometry – one particle at a time cool expand phase grating wait, then measure ~50s 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 11 Adapting this for MAQRO Perform matter-wave interferometry – one particle at a time cool 24.03.2015 expand phase grating Moriond, La Thuile, R. Kaltenbaek wait, then measure 12 MAQRO – concept for Talbot approach Perform matter-wave interferometry – one particle at a time cool expand phase grating wait, then measure ~50s 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 13 Adapting this for MAQRO Perform matter-wave interferometry – one particle at a time cool expand phase grating wait, then measure ~50000 times(?) Similar requirements as before but: • need even better micro-gravity environment 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 14 Predictions for MAQRO QM vs. Classical interference visibility (109 amu) Reduction of visibility due to decoherence 𝜌𝜌 𝑥𝑥, 𝑦𝑦 ≡ 𝑥𝑥 𝜌𝜌 𝑦𝑦 𝑑𝑑𝜌𝜌 𝑥𝑥, 𝑦𝑦 = −Λ 𝑥𝑥 − 𝑦𝑦 𝑑𝑑𝑡𝑡 24.03.2015 2 𝜌𝜌 𝑥𝑥, 𝑦𝑦 Moriond, La Thuile, R. Kaltenbaek 15 Interference for very high masses QM vs. Classical interference visibility (1010 amu) QM vs. classical interference pattern 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 16 MAQRO mission outline • • • • MAQRO spacecraft & orbit based on LPF Passive, radiative cooling & outgassing Two subsystems outside & inside spacecraft Nominal life time: 2 years A. Pilan-Zanoni, J. Burkhardt, U. Johann, M. Aspelmeyer, R. Kaltenbaek, G. Hechenblaikner, in preparation (2015) 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 17 Conclusions & outlook • submitted M3 & M4 proposal • significant progress in mission design & technology development • successful initiation of MAQRO consortium • national support from Austria, France, Germany, Switzerland & the UK Onward to M5: • intensify collaborations • further technology development • proof-of-principle experiments • support from more international partners R. Kaltenbaek & the MAQRO consortium, Macroscopic quantum resonators (MAQRO): 2015 Update, arXiv: 1503.02640 (2015) 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 18 Thanks MAQRO Consortium Coordinator: R. Kaltenbaek (Vienna) Member groups: M. Arndt (Vienna), M. Aspelmeyer (Vienna), P. Barker (London), A. Bassi (Trieste), K. Bongs (Birmingham), S. Bose (London), C. Braxmaier (Bremen), C. Brukner (Vienna), P.-F. Cohadon (Paris), A. M. Cruise (Birmingham), K. Dholakia (St. Andrews), W. Ertmer (Hannover), A. Heidmann (Paris), U. Johann (Astrium), C. Lämmerzahl (Bremen), M. Kim (London), A. Lambrecht (Paris), G. Milburn (Queensland), H. Müller (Berkley), L. Novotny (Zürich), M. Paternostro (Belfast), A. Peters (Berlin), E. Rasel (Hannover), S. Reynaud (Paris), M. Rodriguez (Onera), A. Roura (Ulm), W. Schleich (Ulm), J. Schmiedmayer (Vienna), K. C. Schwab (Caltech), M. Tajmar (Dresden), H. Ulbricht (Southhampton), R. Ursin (Vienna), V. Vedral (Oxford) Austrian Research Promotion Agency (MAQROsteps, Project no. 3589434) MQES study (ESA contract Po P5401000400) NanoTrapS project (ESA contract 4000105799/127NL/Cbi) !THANK YOU! 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 19 Appendix I: additional measurements what if deviations already for 𝑚𝑚 < 108 ? or Λ > 1013 m−2 s−1 ? remember reduction of interference visibility: alternative operational mode: observe expansion of wavepacket 𝑤𝑤 𝑡𝑡 2 2 = 𝑥𝑥� 𝑡𝑡 = 𝑤𝑤𝑠𝑠 𝑡𝑡 Λ > Λ min = 3 𝑚𝑚2 • • • • • 2 2 Λ ℏ2 3 + 𝑡𝑡 3 𝑚𝑚2 𝜎𝜎 𝑤𝑤𝑠𝑠 𝑡𝑡 𝑁𝑁 − 1 ℏ2 𝑡𝑡 3 black, solid: Λ min blue, dashed: QG model, Ellis et al. black, dashed: CSL model, original parameters red, dot-dashed: Károlyházy model green, dotted: Diósi-Penrose model 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 20 Appendix II: Predictions of macrorealism reduction of interference visibility 24.03.2015 VS predicted decoherence parameters Moriond, La Thuile, R. Kaltenbaek 21 Appendix III: Heating of oscillator motion similar to deviations in wave-packet expansion (decoherence events heat oscillator motion) needs to be investigated more closely for MAQRO M. Bahrami, M. Paternostro, A. Bassi, and H. Ulbricht, PRL 112, 210404 (2014) 24.03.2015 Moriond, La Thuile, R. Kaltenbaek 22
© Copyright 2026 Paperzz