Remote sensing application for monitoring and assessment of eutrophication in the NOWPAP region Joji Ishizaka (Nagasaki University) Outline • Definition and Consequence of • • • • Eutrophication Toyama Bay South Sea of Korea Red Tide East China Sea and Yellow Sea Ariake Bay Red Tide Definition of Eutrophication • Accumulation of nutrients and organic matter to lake and coastal environments and resulted changes of ecosystem. • Natural: Long term succession. • Anthropogenic (Human(Human-made): Discharge of waist, fertilizer etc. 1 Consequence of Eutrophication • Increase of Red Tide (HAB: harmful algal bloom) • Decrease of Low Dissolved Oxygen Condition • Mass Mortality to Organisms Bottom-up Control (vs. Top-down Control) Fish Yield ⇑ Ecosystem Structure (trophic (trophic level) ⇑ Primary Production ⇑ Environments (Nutrients) Food Chain Lalli and Parsons 2 Global CHLCHL-a Most of the ocean is oligotrophic! oligotrophic! Paradox of Eutrophication • Phytoplankton: Primary Producer Oligotrophic Environment – Low Productivity • Large Area is Oligotrophic Fishing Ground – Upwelling Area (Natural Eutrophication) Appropriate Amount of Nutrient is Necessary! What is Appropriate Amount? Before Eutrophication Organic Materials Nutrients Organic Materials Nutrients Organic Materials Nutrients Fishing Harvest Phyto plankton Zoo plankton Fish/Clam Sedimentation 3 After Artificial Eutrophication Fishing Harvest Human Pollution Red Tide Organic Materials Organic Materials Nutrients Blue Tide Phyto plankton Zoo plankton Fish/Clam Oxygen Depletion Nutrients Sedimentation How we can use remote sensing to monitoring of eutrophication. • Direct observation of change • Check of appropriate location of ship observation • Check of background level • - chlorophyllchlorophyll-a, red tide • - SST, altimeter,, Toyama Bay Project Monitoring in situ Survey of Toyama Bay – Observed Variable with Vessel Temperature, Salinity, Water Color, Transparency, Remote Sensing Reflectance – Analyzed Variable in Lab Dissolved Oxygen, COD Phosphate, Nitrogen and Silicate ChlChl-a, Suspended Solid, CDOM, 4 Analysis of MODIS ChlChl-a Daily Images Anti-clockwise flow pattern Two peaks of Chl-a concentration one in early spring and the other in fall every year Monthly SeaWiFS ChlChl-a Data Aanalysis (98(98-03) Chl-a concentration of inner are of the Bay become higher every summer Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1998 1999 2000 2001 No valide data available 2002 2003 Seasonal Variability of Satellite Chlorophyll a 1997~2002 Chlorophyll a > 0.8 μg l-1 (Yamada et al.) 5 Outer Seasonal variability of SeaWiFS Chl.a from each sampling points Middle Inner InterInter-annual Variation of Coastal SeaWiFS ChlChl-a Concentration (98(98-03) 1998 1999 2000 2001 2002 2003 Validation of SeaWiFS Data 6 Comparison of in situ ChlChl-a and COD (Chemical Oxygen Demand) Strong positive correlation (R = 0.87, N =86) Less variability was found in spring and summer. Transport of C. Polykrikoides Red Tide? (MODIS, JAXA) 3. Results and Discussions 1. 10 sub-samples collected from various water condition based on true color and chlorophyll images Sep. 8 , 2002 (a) Aug. 19, 2002 True Color from MODIS bands (645, 555,469 nm). (d) MODIS Chlorophyll Con. (b) (e) (c) (NFRDI, 2004) (Son, Y.B. et al., In prep.) 7 3. Results and Discussions : Spectral characteristic of sub-samples Bright color (B1, B2) : Radiance peaks at green band. High radiance and particulate backscattering but phytoplankton absorption is minimal High chlorophyll and red tide (H, R) : Radiance peaks at green band High absorption of the phytoplankton and gelbstoff/detritus . Particulate backscattering values are ~3-4 times lower than in bright color samples. Low and moderate chlorophyll (L, M) : Radiance peaks from 412 nm to 531 nm (blue to green bands) absorption and backscattering of the phytoplankton, gelbstoff, and detritus in all visual wavelengths 3. Results and Discussions : Scheme for identifying the water types Step 1 Step 3 Yes No No 667 nm >678 nm No Step 2 No Max(531 & 551 nm) Step 4-1 Step 4 Highest peak at 412 nm Step 2-1 Highest peak at 551 nm Step 4-2 Ye s Yes Yes No Radiance ratio of 412/443 is greater than that of 531/551 Step 4-3 No Yes No Radiance ratio of 412/488 is greater than that of 531/551 No values at 748 and 869 nm Step 2-2 Yes Yes Turbid Water Red Tide Mixed Water Clear Water Intermediate Water Step 1: The maximum peaks in blue-to-green wavelengths to separate largely two different water types. Step 2: Determining intermediate and clear waters. step 2-1 used the highest peak at nLw(412). Step 2-2 used that the values of nLw(748) and nLw(869) are zero. Step 3: Turbid and mixed waters included red tide water. Turbid water used nLw(667) > nLw(678) and mixed water as nLw(667) < nLw(678). 3. Results and Discussions : Identify the water types 19% 81% Step 1 3% 23% 9% Step 3:nLw(667)>nLw(678) 16% 72% Step 2 CW IW TW Step 2 43% 33% Step 3:nLw(667)<nLw(678) Step 2 Sep. 8, 2002 Aug. 19, 2002 LC 1% Step 3:nLw(667)>nLw(678) Step 2 Step 3:nLw(667)<nLw(678) 44% 56% Step 1 MW LC CW IW TW MW 8 3. Results and Discussions : HABs Detection Aug. 19, 2002 Sep. 8, 2002 Step 4-1 : nLw(551) is highest peak among The 9 visible bands of MODIS Step 4-2 : Step 4-3 : (NFRDI, 2004) (NFRDI, 2004) Increase of China Coastal Area in the East China Sea (Zhu, 2003) 2003) 10-year average Chl-a Jan Feb May June Sep Oct Mar July Nov Apr Aug Dec 9 10-year average nLw555 (Sediment) Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec High chl.a area and Low Salinity Water (Kim et al., Submitted) Distribution of month of maximum 10 Distribution of month of maximum Seasonal Changes in Each Area 10 8 6 4 2 0 10 8 6 4 2 0 10 8 6 4 2 0 JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 0 長江 省 JFMAMJJASOND 10 8 6 4 JFMAMJJASOND 2 0 10 8 JFMAMJJASOND 6 4 2 0 江 10 8 6 4 2 0 10 8 6 4 2 0 浙 10 8 6 4 2 0 10 8 6 4 2 0 JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 0 10 8 6 4 2 0 JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND Changjiang Diluted Water 10 Area 15 8 6 4 2 0 JFMAMJJASOND 10 Area 13 8 6 4 2 0 10 8 6 4 2 0 10 8 6 4 2 0 10 8 6 4 2 0 10 8 6 4 2 0 JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 JFMAMJJASOND 0 JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 0 長江 浙 10 Area 12 8 6 4 JFMAMJJASOND 2 0 10 Area 9 8 JFMAMJJASOND 6 4 2 0 JFMAMJJASOND 省 10 Area 14 8 6 4 2 0 江 10 Area 16 8 6 4 2 0 10 8 6 4 2 0 JFMAMJJASOND Area 4 JFMAMJJASOND 10 Area 11 8 6 4 2 0 JFMAMJJASOND (Yamaguchi et al., In prep.) 10 8 6 4 2 0 Area 5 JFMAMJJASOND 11 Changjiang Diluted Water JFMAMJJASOND 10 Area 15 8 6 4 2 0 JFMAMJJASOND 10 Area 13 8 6 4 2 0 10 8 6 4 2 0 10 8 6 4 2 0 10 8 6 4 2 0 JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 JFMAMJJASOND 0 JFMAMJJASOND JFMAMJJASOND 10 8 6 4 2 0 長江 浙 10 Area 12 8 6 4 JFMAMJJASOND 2 0 10 Area 9 8 JFMAMJJASOND 6 4 2 0 省 10 Area 14 8 6 4 2 0 江 10 Area 16 8 6 4 2 0 10 8 6 4 2 0 JFMAMJJASOND 10 Area 11 8 6 4 2 0 JFMAMJJASOND Area 4 JFMAMJJASOND 10 8 6 4 2 0 JFMAMJJASOND Area 5 JFMAMJJASOND Interannual Variability of Chl-a and Changjiang Discharge on May-Oct. 1.2 1 (Lag= 1) 4 0.2 2 R=0.43 P<0.01 chl-a (mg/m3) 0 0 4 4 4 4 0x10 2x10 4x10 6x10 8x10 12 10 (Lag= 0) 3 2 1 R=0.57 P<0.01 0 0 4 4 4 4 0x10 2x10 4x10 6x10 8x10 (Lag= 0) R=0.70 P<0.01 0 0 4 4 4 4 0x10 2x10 4x10 6x10 8x10 1 4 0.6 0.4 3 (Lag= 2) 0.8 (Lag= 2) 1.4 1.2 1 0.8 0.6 0.4 R=0.67 0.2 P<0.01 0 0 4 4 4 4 0x10 2x10 4x10 6x10 8x10 CRD (m3/s) 8 6 4 2 R=0.27 P=0.12 0 0 4 4 4 4 0x10 2x10 4x10 6x10 8x10 Correlation between Chl-a and Discharge with Lag 0-2 months 12 Interannual Variability in the Yellow Sea Spring Summer Changjiang Discharge Chl.a nLw555 ○ Increase of Frequency of Intense Algal Blooms in the Yellow Sea Nutrient Changes in the Yellow Sea 13 YOC Verification Project (Yellow Sea Large Marine EcosystemEcosystem- Ocean Color Project) Project) Standard_chlorophyll_concentration New_chlorophyll_concentration 14 120 50 130 140 150 40 30 33.5 Location of the Ariake Sound 20 Isahaya Bay 33.0 Reclamation Area 1996~ 32.5 32.0 129.5 130.0 130.5 131.0 Eutrophication in Ariake Bay? - Symptom of eutrophication • Red tide increase • Low oxygen condition However: • No nutrient load increase • Dike Construction on 1998 諫早湾干拓(ASTER) 15 Isahaya Dike Red Tide in Ariake Bay in Winter 20002000-01 Nori (red algae) Culture 40% ($200M!) Loss Comparison with Red Tide Map Produced by Nagasaki Fisheries Experimental Station July 8-13, 2001 有明海 Jul 9,2001 Nov. 9-Dec. 6, 2001 有明海 Nov 22,2001 ( :Observed Area) 16 Red Tide in Ariake Bay Relcamation Area SeaWiFS (2000.11.23-2001.4.1) Monthly SeaWiFS Chl.a 1 2 3 4 5 6 7 0.01 8 9 0.1 10 64 10 11 12 98 99 00 01 02 03 04 17 Chl.a (mg m-3)SEA LEVEL (cm) Spring Neap 3.0 2.5 2.0 1.5 1.0 Spring 5 Chl.a 64 10 nLw 555 1 0.1 0.05 3 1 0.1 0.05 3 5 9 10 11 14 16 24 nLw555 (mW cm-2 μm-1 sr-1) 700 600 500 400 300 200 100 20 16 12 8 4 Turbidity and Chlorophyll Change with Tidal Cycle (SeaWiFS) October, 2002 Red Tide Number in Ariake Sound (Isobe, 2000) 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 3030-year Increase of transparency Value (m) % Change 18 Ariake Bay Hypothesis • Decrease of Tidal Flat (Not only Isahaya Bay) • Decrease of Tidal Current • Decrease of Transparency • Increase of Available Light to Phytoplankton • Increase of Red Tide • Increase of Low Oxygen Water • Dec D ease off Clam Cl Use of Remote Sensing for Eutrophication Monitoring • • • Large Spatial Coverage High Frequency Low Price However • Period is still limited for 10 years. • Accuracy have to be checked. • Cause and effect is not clear. • Combination with shipship-observation is necessary. 19
© Copyright 2026 Paperzz