JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D19, PAGES 23,617-23,622, OCTOBER 20, 1999 Methane uptake by a selectionof soilsin Ghana with different land use Anders Priem6andSorenChristensen Departmentof PopulationBiology, CopenhagenUniversity,Copenhagen Abstract. We measuredthe oxidationof atmospheric methanein tropicalsoilsin Ghanacovering a moisturegradientfrom themoistforestzoneto the savannazoneat the onsetof the rainy season. Landuseat the sitescoveredundisturbed (forestandsavanna)andcultivatedsoil,including burning.Generally,themethaneoxidationratesin thetropicalforestandsavannasoilswerelow (rangefrom 9 to 26 [tg CH4m"•h") comparedto, for exampletemperateforestsoils.In the savanna soil, annualfire had decreasedsoil methaneoxidationratesto 5 [tg CH4m-2h'• comparedto 9 •tg CH4m-2h-•at a sitenotsubjected to fire for 6 years.In pairedsitesof moistforestandarablesoils, methaneoxidationrateswere lowerby >60% in the arablesoils.Methaneoxidationratesin three arablesoilsin the savannazonesoilsrangedfrom 7 to 11 [tg CH• m-2h-•beforethe first rain but increasedto 23-28 •tg CH• m-•h-•aftertherain. Theseratesarecomparableto otherreportsfrom arablesoilsin tropicalandtemperateregions.Thusarableagricultureand,to a lesserextent, biomassburningdecreased methaneoxidationratesby the investigated soils. 1. Introduction 2. Materials and Methods Methaneis an important greenhouse gascontributing to global 2.1. Field Sites warming[Rohde,1990]. Oxidationof atmospheric methaneby Three areaswere selectedfor measurements of methaneuptake microorganisms has been reportedin virtually all investigated rates.In the Guineasavannaarea [Dicksonand Benneh,1988] in well-drainedsoils.The globalsinkstrength of thesesoilshasbeen thenorthernregionof Ghana,we workedin thefieldssurrounding estimatedat 17-23 Tg yr-1 with nearly half of the soil sink for thevillageDalun(9N35', 0W58'), 15 km northof Tamale,andin methane9ccurringin tropicalecosystems [Potteret al., 1996]. Mole National Park (NP) (9N15', 1W50'), 100 km west of TaDespitetheir importanceas a sink for methane,tropicalsoils male. Both areasrecieve 1000-1500 mm precipitationannually have receivedlittle attentioncomparedto temperatesoils.Land [Dicksonand Benneh,1988] and have a distinctrainy season usechanges involvingconversion of forestto agriculture andvice usuallyextendingfromMay to October.At Mole NP, two paired versahavebeenshownto have a pronounced effecton methane uptakein temperatesoils [Dobbie et al., 1996; Priemd et al., 1997],but it is not clearif the samelandusechangeshavesimilar effectson methaneuptakein tropicalsoils.Agriculturalpractices in mosttropicalcountriesdiffer from temperatezoneagriculture in termsof, for examplefallow periodsand applicationof fertilizers and pesticides.Also, fire is an integratedpart of agriculturein manypartsof the tropics. In the Neotropics, Keller et al. [1990, 1993]and Goreauand de Mello [1988] foundthatconversion of foreststo cattlepastures or arablefields decreased the soil sink strengthfor atmospheric methane or turnedthesoilintoa netsource of methane. In tropical soils, methaneproductionfrom termitesmay affect the sink strengthfor atmospheric methane[MacDonaldet al., 1998];and landusechanges maychangetermiteactivityaswell asthe soil's capacityfor oxidationof atmospheric methane.In this study,we investigated the effect of land use (includingfire and fallow period)on methaneuptakeby a varietyof soilsin Ghana. experimentalsiteswere selected:an unburnedsite which was accidentially burned6 yearsearlieranda siteburnedannuallyfor the last 10 yearsin Februaryduringthe midstof the dry season. The two sitesshowedno differencesin the woodyvegetationand the most commontreesat both siteswerePterocarpuserinaceus (Fabaceae), Parkia clappertonia (Mimosaceae), Piliostigma thonningii(Caesalpinaceae), AJkeliaafricana (Caesalpinaceae), Detarium microcarpa(Caesalpinaceae),Burkea africana (Caesalpinaceae), Nauclea latifolia (Rubiaceae), Butyrospermum paradoxurn(Sapotaceae), Anogeissus leiocarpus( Combretaceae), Combretum ghanalense ( Combretaceae), Terminalia avicennoides (Combretaceae),Annona senegalensis(Annonaceae), Parinaria curatellifolia (Chrysobalanaceae),Parinaria polyandra (Chrysobalanaceae), Pseudocedrelakotchyi (Meliaceae),Afrormesialaxifiora (Papilionaceae),Maytenussenegalen- sisx(Celastraceae), Lannea acida(Anacardiaceae), andHannoa undalata(Simaroubaceae). In the southernpart of the country,we worked in the fields and the primary moist semideciduous forest [Dickson and Benneh, 1988] near the village of Odumasi (5N25'37", 1W41'54"), approximately50 km northof Takoradi. Here the precipitationis 1500-2000mm annually[Dicksonand •Nowat Center forMicrobial Ecology, Michigan StateUniversity,Benneh,1988]. The forestplotshad no logginghistoryand had EastLansing. apparentlyneverbeencultivated,and were separated from fields Copyright1999 by theAmericanGeophysical Union. by a dustroad. Soil temperature at 2-, 5-, and 12-cmsoil depth rangedfrom 25ø to 39øC at the sitesat Dalun and Mole NP and Papernumber1999JD900427. from from 24 ø to 30øC at the Odumasi sites. An overview of the 0148-0227/99/1999JD900427509.00 sites is found in Table 1. 23,617 23,618 PRIEMI•ANDCHRISTENSEN: METHANEOXIDATION BY SOILSIN GHANA Table 1. Site Characteristics Location Land Use Dalun village Dalunvillage Dalunvillage Dalunvillage Dalunvillage DominantVegetation SoilOrder SoilMoisture, pH percentof WHC Total Soil C, Total SoilN, percentof dwt percent of dwt yamsfield Dioscoresrotundata 18 yearsfallow grasses dominated byAndropogonsp. 25 yearsfallow grasses dominated byAndropogonsp. Oxisol Oxisol Oxisol 6.3 12.1 10.1 5.8 5.9 5.7 0.41+0.00 0.43+0.06 0.35+0.05 0.024+0.001 0.027+0.003 0.029+0.003 maizefield 6 yearsfallow Zea mays grasses dominated byAndropogonsp. Oxisol Oxisol 15.3 7.4 5.1 5.1 0.48+0.01 0.40+0.07 0.032+0.001 0.029+0.005 savanna, seetext Oxisol 54 7.1 0.77+0.08 0.063+0.007 savanna,burned seetext Oxisol 63 6.9 1.98+0.14 0.141+0.014 Odumasivillage moistforest no dominantspecies, denseundergrowth not known not known Odumasivillage 3 yearsfallow Grasses not known Odumasivillage 25 yearsfallow Grasses 79 52 63 5.3 5.1 4.8 1.44+0.05 0.75•-0.02 1.93+0,28 0.107:k0.006 0.073•-0.001 0.167+0.019 no dominantspecies, denseundergrowth not known 67 89 4.8 4.9 4.33:•0.05 2.00 0.345+0.012 0.178 79 91 4.3 4.7 2.52+0.41 1.86+0.07 0.163+0.015 0.183•-0.005 Mole NP unburned Mole NP Odumasivillage moistforest Odumasivillage cassava field Manihot Odumasivillage moistforest nodominant species, • Odumasi villagecocoa field Theobrama utilissima not known undergrowth not known cacao not known Soilmoisture andpH n=l; totalsoilC andN areaverage +1 SE(x);n=2.Siteswhicharegrouped together werelocated nextto eachotherorseparated by a dustroad.WHC iswaterholdingcapacity; dwtis dryweightsoil. 2.2. Estimation of Methane Uptake Rates At eachsite,sixteento eighteen10-cminnerdiametercollars consistingof PVC cylinderswere pushed5 cm into the soil. Methane oxidation rates were measured once or twice at each site duringJuly 1995.Later,a 5-cm-highPVC lid wasfittedintoa butyl rubberlined groovein eachcollar.Methaneuptakerates were calculatedfrom the lognormaltransformeddecreasein chamberheadspace methaneconcentration as estimated fromthe analysisof 4-mL gassamples takenafterattaching the lids and againafter5, 10, 15, and20 min. The gassamples weretaken fromthe chamberheadspace througha butylrubberstopperusing a syringeandimmediately transferred to 2-mL evacuated injection vials crimp sealedwith a blackbutyl rubberstopper.Methane analyses weredonewithin 1 monthof sampling,usinga Varian 3400gaschromatograph (GC) equipped witha PorapakT column operatedat 45øC and a flame ionizationdetectoroperatedat 160øC. Also, the GC was equippedwith a Varian 8100 Auto- remainingflux measurements showednet methaneemission rangingfrom 10to 105 gg CH4m-2h-1. FigureI showsthemethane uptakeat twopairedsitesof primarymoistforestandagricultural land(cassava andcocoa).On average, methane uptakeratesin the agricultural soilswere63% lower than in the moist-forest soils. In the savanna and moist forestareas,methane uptakeratesweresimilarin pairedfieldand fallow soilswhichwereinvestigated on the samedatesandthus had comparable water status(datanot shown).Soil methane uptakeratesin theburnedandunburned savanna wererelatively low. Uptakeratesat the burnedsite were lowerthanat the unburned site(Figure2). Methaneuptakein threearablesoilsin the savannaarea increasedtwofold to threefoldbetween2 days beforeand2 daysafterthe first heavyrainsof the rainy season (Figure3). 4. Discussion samplermodifiedfor injectionof 0.8-mLgassamples. The injecTheaverage reduction in methane uptakeratesin agricultural tor temperature was40øC,and99.9998%purenitrogen wasused soilscompared to forestsoilswas63%, whichagrees with the as carriergas. Preliminaryexperimentsshowedthat the vials average 80% reduction following conversion of forest or savanna maintained constant methane con6entrations for at least 2 months to agriculture observed in the tropics(Table2) andof forestor (we did not testfor longerstoragetimes). 2.3. Miscellaneous Analysesfor total soil C and N were performedon a Carlo ErbaNitrogenAnalyser1500. Soil watercontentwas estimated afterdryingof soil for 24 hoursat 105øC,pH wasmeasured in 1:2.5 soil:waterslurries,andsoil temperature wasmeasured at 2-, 5-, and 12-cmsoil depth.We did our measurements duringthe rainy seasonin the southernpart of Ghana;the rainy seasonwas delayedand had not startedwhen we initiatedour work in the northernpart of Ghana.However,the first heavy rain of the season coincided with our work at Dalun. 3. Results Methane uptake (range from <1 to 53 [tg CH4 m-2 h-•) was observedin 275 out of 295 flux measurements (93%), while the prairielandin temperate climates [Mosieret al., 1991;Ojimaet al., 1993;Dobbieet al., 1996].The similarreduction in tropical andtemperate soilsmayseemsurprising in viewof thelessintensive use in small-scalefarming in most tropicalcountriesof potentialinhibitors of methane uptakeratesincluding nitrogen fertilizers [Hiitschet al., 1994],pesticides (A. Priem6andF. Ekelund,Effectsof five pesticides on soil oxidationof atmos- phericmethane, submitted to Soil Biologyand Biochemistry, 1999),andtractors andheavyfarmmachinery [Hansen et al., 1993]compared to European andNorthAmericanagriculture. However,thechanges in soilstructure andorganicmattercontent accompanying arablecultivation mayalonecausea reduction in methane uptake. In themoistforestarea,totalsoilC waslowerin thecultivated soilscompared to theforestsoils(Table1), andthis difference in organic mattercontent andaccompanying changes in soilstructure mayexplainat leastpartof thereduction in methane PRIEMl•ANDCHRISTENSEN: METHANE OXIDATION BYSOILSIN GHANA 40 23,619 40 Forest soil Before rain Arable soil 30 '""'":'"'"'"• Afterrain T T T 20- 20- r T T 10- T 10- T • 0 Site A Site B Yam field 18 yr fallow 25 yr fallow Figure 1. Methaneuptakein soilsat two pairedsitesof primary Figure 3. Methaneuptakein three arablesoils in the savanna moist forest and agriculturalland near Odumasi village in zone near Dalun village, northernGhana,2 days before and 2 southern Ghana. Error bars denote 1 standard error. days after the first heavy rains of the rainy season.Error bars denote I standard error. uptake rates in the cultivatedsoils. Thus the bulk density is usuallylargerin agriculturalsoilscomparedto naturalsoils,as a resultof lossof structurebecauseof decreasing organicmatter content.McDonaM et al. [1996] found a negativecorrelation betweenmethaneuptakeand soil bulk densityin a rangeof temperatesoils,andBall et al. [1997] foundthat relativediffusivity and air permeabilityin the soil were goodpredictorsof methane uptake in soils under different land use. Also, the methane- oxidizingmicroorganisms may be influencedby changesin the availabilityof nonmethane Co substrates releasedduringorganic matterdecomposition [Jensenet al., 1998].The loweredmethane oxidationrates in tropical arable soils may also be relatedto changein termite numbersand/or termite speciescomposition becausetermitesare a significantsourceof atmospheric methane [Khalil et al., 1990],andtermiteactivitymay influencethe soils abilityto absorbmethanefromtheair [MacDonaMet al., 1998]. Workingwith temperatesoils,Priern• et al. [1997] foundthat it takes decadesor even centuriesfor methaneuptaketo recover from arableagriculture,while the studyby Keller and Reiners [1994] indicatesthat methaneuptake in disturbed(secondary 15 forest and abandoned.pasture) systems in Costa Rica were restoredto predisturbance levelswithin50 years.The presentdata on savannaandmoistforestsoilsindicatesomeincreasein uptake rates in soils left fallow for 3-25 years (Figure 3 and data not shown), but our data set does not allow us to draw any firm conclusions on the recoverytime as we were not able to locate any pairedsitesof primaryvegetationandlate fallow. In Africa, the areapotentiallysubmittedto fire is of the order of 10 million km2 [Delrnaset al., 1991a], andin the WestAfrican savanna,60% to 80% of the Guineansavannais burnedannually 10- m Table 2. MethaneUptakeRatesin UplandSoilsin Different TropicalEcosystems Ecosystem Savanna' ForesP Pasture I Unburned Burned Fields MethaneUptake,gg CI-I4m-zh-' 37+8 (n=7) 39+5 (n=25) -8+7 (n--9) 7+5 (n=5) Ratesareaverage+1 SE(x),andn denotes numberof sites.The dataare Figure 2. Methaneuptakein savannasoil in two experimental calculatedfromthereportscompiledin Table 2. plots at Mole National Park, northernGhana.The burnedsite is 'Savanna includes unburned and burned sites. burnedannuallyin themidstof thedry season. Errorbarsrepre- •Forestincludesprimaryforests,secondary forests,disturbed forests,and sent 1 standard error. clearcut forests. 23,620 PRIEMI•ANDCHRISTENSEN' METHANE OXIDATION BY SOILSIN GHANA Table 3. MethaneFlux Ratesby Predominantly AerobicSoilsin TropicalEcosystems Ecosystem Location Description Methaneflux, Citation •tg CH4 m-2h-1 Savanna SouthAfrica dry period Savanna Mali Savanna Savanna Savanna Savanna Savanna Savanna Savanna Savanna Savanna Savanna Savanna Savanna Congo Congo Brazil Brazil Brazil Venezuela Venezuela Brazil Brazil Brazil SouthAfrica SouthAfrica Savanna India Savanna Savanna Ghana Ghana unburned,dry season burned,dry season Forest Forest Brazil Brazil rain forest rain forest Forest Brazil clearcut, rain forest area Forest Ecuador rain Ibrest Forest Forest Forest Ecuador PuertoRico PuertoRico secondary rain forest secondaryrain forest mahoganyplantation 34 24 12 Forest Puerto Rico wet Ibrest 21 Forest Puerto Rico clearcut, wet forest 10 Forest Brazil rain forest 48 Forest Brazil disturbed forest, rain thrust area 45 Forest Brazil rain Ibrest 72 Forest Forest Forest Forest Forest Forest Congo Malaysia Malaysia Malaysia Venezuela Panama Evergreen rain tbrest old secondaryrain Ibrest youngsecondary rain lbrest semideciduous, rainy season semideciduous, rainy season 42 56 50 39 48 24 Forest Forest Costa Rica Costa Rica Semideciduous Semideciduous 51 53 Forest Forest Forest Forest CostaRica Cameroon Cameroon Cameroon semideciduous, secondaryforest nearprimarymoist secondarymoist youngplantation 50 75 49 18 Forest Central Afi'ica rain forest Forest Forest India Ghana seasonallydry moistsemi-deciduous, rainy season Pasture Pasture Brazil Brazil rain lbrest area rain lbrest area 52 3 unburned burned burned17 daysbefore,dry season burned45 daysbefore,dry season bumed20 yearsbefore,dry season dry season rainy season unbumed,dry season bumed2 daysbefore,dry season burned30 daysbefore,dry season unburned,dry season burned,dry season 26 26 40 40 73 -41a -34a -30b 182b 850b -68-+40 -56-+9 480c 9d 5d 15 16 12 -26 81 450c 18d 11 -41 Pasture Pasture Panama Panama burned,rainy season unburned,rainy season Pasture Pasture Costa Rica Costa Rica semideciduous forest area semideciduous forest area -27 -9 8 6 Pasture Costa Rica abandoned,semideciduous -38 Pasture Puerto Rico Pasture PuertoRico 8 differentagriculturalpractices 8 Fallow, weeded Cameroon mosit forest area 17 Fields Fields rain tbrest area rain forest area -3 -5 Ecuador Brazil Field Panama semideciduous forestarea,rainyseason Field Fields Fields Congo Ghana Ghana savannaarea moistthrustarea,rainy season savannaarea,dry season Fields Fields Ghana Venezuela savannaarea,onsetof rainyseason savannaarea,dry and rainy season Field India savanna area 9 19 14d 8d 26d -47a 240c Seiler et al. [ 1984] Delrnaset al. [ 1991b] Delrnaset al. [ 1991b] Delmaset al. [1991b] Andersonand Poth [1998] Andersonand Poth [1998] Andersonand Poth [1998] Hao et al. [1988] Scharffeet al. [ 1990] Poth et al. [ 1995] Poth et al. [1995] Poth et al. [1995] Zeppet al. [1996] Zepp et al. [ 1996] Singhet al. [1997] thisstudy this study Keller et al. [1983] Keller et al. [1986] Keller et al. [1986] Keller et al. [1986] Keller et al. [ 1986] Keller et al. [1986] Keller et al. [1986] Steudleret al. [ 1991] Steudleret al. [1991] J. A. MacDonaldet al. (1999)½ MacDonaldet al. (manuscriptin preparation,1999) Steudleret al. [ 1996] Delmaset al. [ 1992] MacDonaldet al. (manuscriptin preparation,1999) MacDonaldet al. (manuscript in preparation,1999) MacDonaldet al. (manuscript in preparation,1999) Scharffeet al. [1990] Keller et al. [ 1990] Keller et al. [1993] Keller and Reiners[ 1994] Keller and Reiners[1994] MacDonaldet al. [1998, manuscript in preparation,1999] MacDonaldet al. [1998, manuscript in preparation,1999] MacDonald et al. [ 1998] Tathyet al. [ 1992] $ingh et al. [1997] this study Goreauand de Mello [1988] $teudleret al. [1996] Keller et al. [ 1990] Keller et al. [ 1990] Keller et al. [1993] Keller and Reiners[1994] Keller and Reiners[1994] Mosier and Delgado [1997] Mosier et al. [1998] MacDonald et al. [1998] Keller et al. [1986] Goreauand de Mello [1988] Keller et al. [1990] Delrnaset al. [ 1991b] this study this study this study $anhuezaet al. [ 1994] Singhet al. [1998] Negativeratesdenoteemissionof methanefrom soil to atmosphere. The flux ratesfrom naturalecosystems in Singhet al. [1998] are not includedin the tableastheyare a repetitionof datareportedby Singhet al. [1997].References tbr footnotesa-d arenot includedin the calculations of averageuptakeratesfor the differentecosystems in Table3 (seemaintextfor furtherexplanations). •Methaneemissionwaspossiblydueto emissionfi'omunderground gasreservoirs. bHighuptakerateswereduetonearbybiomass burningcausing elevated methane concentration in theair. cUptakeratesare unusuallyhigh. dMeasurement periodis tooshortto allowextrapolation of data. eSourceis J. A. MacDonaldet al. (The effect of ternritebiomassand anthropogenic disturbances on the CH4 budgetsof tropicalforestsin Cameroonand Borneo,manuscriptin preparation,1999). Hereinafterreferredto as MacDonaldet al., manuscriptin preparation,1999. PRIEMI•ANDCHRISTENSEN: METHANE OXIDATION BYSOILSIN GHANA [Menautet al., 1991]. Savannafire may havepronounced effect on soil microbialcommunitiesbecauseof for examplethe concomitantchangesin plant cover, the releaseof nutrients,the biocidaleffectof burning,andchangesin soilmoisture.We found that fire decreased methaneuptake(Figure2). Soil water content at the burnedsitewas somewhathigherthan at the unburnedsite (63% versus54% of water holdingcapacity)which may partly explainthe differencein methaneuptakerates,as Gulledgeand Schirnel[ 1998]foundthatmethaneoxidationratesdecreased with increasingsoil moistureaboveapproximately 40% waterholding capacity.The differencein soil water contentmay be due to changesin plant covercausedby fire. Other workersalsoreport smallor no effectof biomassburningon the soil sinkfor methane [Keller et al., 1990; Delmas et al., 1991b; Zepp et al., 1996; Andersonand Poth, 1998]. It shouldbe notedthat Zepp et al. [1996] worked on soilswhich were showinga net emissionof methaneto the atmosphere dueto biogenicmethaneproduction. Soil methaneuptakemaybe restrictedat low soilwatercontent by desiccationand at high soil water contentby diminished methanetransportinto the soil [Czepiel et al., 1995;Bowdenet al., 1998].After a prolonged dry season with littlerain,the agricultural soils in the savanna area had a moisture content of less than 16% of the waterholdingcapacity(Table 1), andmethane uptakeratesweresmall.The firstheavyrain afterthedry season had a pronounced effecton methaneuptakein the arablesavanna soilswhichincreased nearlythreefoldat threesites(Figure3). This observation is in accordance with Gulledgeand Schirnel [1998] observingan increasein methaneoxidationrateswith soil moistureup to about30% of the water-holdingcapacityandwith Strieglet al. [1992],who foundthatuptakeof methaneby desert soilswasenhancedby rainfall. Table 3 contains a compilation of methane uptake rates reportedfor tropicalsoils.From thesedata,we calculatedaverage methaneuptakeratesfor differenttropicalecosystems (Table 2). However, for different reasons,someof the values in Table 3 are not includedin the calculationof the ecosystemuptakerates.We excludedthe very high uptakerates(up to 850 [xgCH4 m-2 h-l) reportedby Poth et al. [1995] from bumed tropical savannain Brazil. The highrateswere causedby activefiresandsmouldering combustionfrom earlier fires in the immediatestudyareawhich resultedin elevatedbackgroundlevelsof methanein somecases by a factorof 10 (M. Poth,personalcommunication, 1998). Also, someVenezuelansoilsare not includedastheyarenet emittersof methanebecauseof biogenicmethaneproductionand possibly also leakagefrom undergroundgasreservoirs.The ratesreported by Singhet al. [1997, 1998] are not includedas they are much higherthanany otherratesreportedin any ecosystem andneedto be supported by additionalmeasurements. The averagemethaneuptake rates in tropical savannaand forestsoils(Table 2) are of the sameorderas soilsin temperate naturalan'dseminatural ecosystems [e.g.,Mosieret al., 1991; Dobbie et al., 1996; Priern• et al., 1997]. If extrapolatingthe methaneuptake rates in tropical savannasto tropical semiarid steppeand usingthe land areadatagivenby Potter et al. [1996], then the total sink strengthfor tropicalsoils(excludingarable soils)is 17 Tg yr-I whichis higherthanthe 8 Tg yr-I reportedby Potter et al. [ 1996]. In conclusion, the observed ratesof methaneuptakein tropical forestandsavanna soilsweresomewhat lowerthanin othertropical and temperateforest soils while the observedrates in arable soilswerecomparable to otherreportsfromarablesoilsin tropical and temperate regions.We foundthat arableagricultureand,to a 23,621 lesserextent,biomassburningdecreased methaneoxidationrates by the investigated soils. Acknowledgments. We acknowledgethe financial supportfor this work from the Commisionof the EuropeanUnion throughEnvironment Program contract EV5V-CT91-0052 and from the Danish Intemational DevelopmentAgency (DANIDA). References Anderson,I. C., and M. A. Poth, Controlson fluxes of trace gasesfrom Brazilian cerradosoils,d. Environ. Qual., 27, 1117-1124, 1998. Ball, B.C., K. E. Dobbie, J.P. Parker, and K. A. Smith, The influence of gas transportand porosityon methaneoxidationin soils,d. Geophys. Res., 102, 23,301-23,308, 1997. Bowden, R. D., K. M. Newkirk, and G. M. Rullo, Carbon dioxide and methanefluxes by a forest soil under laboratory-controlled moisture and temperatureconditions,Soil Biol. Blochem.,30, 1591-1597, 1998. Czepiel, P.M., P.M. Crill, and R. C. Harriss, Environmentalfactors influencing the variability of methaneoxidation in temperatezone soils,d. Geophys.Res.,100, 9359-9364, 1995. Delmas, R. A., P. Loudjani, A. Podaire, and J.-C. Menaut, Biomass burning in Afi'ica: An assessmentof annually burned biomass,in Global Biomass Burning.' Atmospheric, Climatic, and Biospheric Implications,edited by J. S. Levine, pp. 126-132, MIT Press,Cambridge,Mass., 1991a. Delmas, R. A., A. Marenco., J.P. Tathy, B. Cros, and J. G. R. Baudet, Sourcesand sinksof methanein the African savanna.CH4 emissions from biomassburning,d. Geophys.Res.,96, 7287-7299, 1991b. Delmas, R. A., J. Servant,J.P. Tathy, B. Cros, and M. Labat, Sourcesand sinksof methaneand carbondioxide exchangesin mountainforest in equatorialAl¾ica,d. Geophys.Res.,97, 6169-6179, 1992. Dickson, K. B., and G. Benneh,A New Geographyof Ghana, 170 pp., Longman,White Plains,N.Y., 1988. Dobbie, K. E., K. A. Smith,A. Priem6,S. Christensen,A. Deg6rska,and P. Orlanski, Elt•ct of land use on the rate of methaneuptakeby surface soilsin northemEurope,Atmos.Environ.,30, 1005-1011, 1996. Goreau,T. J., and W. Z. de Mello, Tropical deforestation:Someeffects on atmosphericchemistry,Ambio, 17, 275-281, 1988. Gulledge,J., and J.P. Schimel,Moisture controlover atmosphericCH4 consumptionand CO2 productionin diverseAlaskan soils, Soil Biol. Blochem., 30, 1127-1132, 1998. Hansen,S., J. E. Ma:hlum,and L. R. Bakken,N20 and CH4 fluxesin soil influencedby Ibrtilization and tractortraffic, Soil. Biol. Blochem.,25, 621-630, 1993. Hao, W. M., D. Scharffe, P. J. Crutzen, and E. Sanhueza, Production of N20, CH4, and CO2 from soilsin the tropicalsavannaduringthe dry season,,/. Atmos. Chem., 7, 93-105, 1988. Htitsch, B. W., C. P. Webster, and D. D. Powlson, Methane oxidation in soil as affectedby land use,soil pH andN fertilization,Soil Biol. Biochem., 26, 1613-1622, 1994. Jensen,S., A. Priem6,and L. Bakken, Methanolimprovesmethaneup- take in starvedmettianotrophic microorganisms, Appl. Environ. Microbiol., 64, 1143-1146, 1998. Keller, M., and W. A. Reiners, Soil-atmosphereexchangeof nitrous oxide, nitric oxide, and methane under secondarysuccessionof pastureto forest in the Atlantic lowlandsof Costa Rica, Global Biogeochem.Cycles,8, 399-409, 1994. Keller, M., T. J. Goreau,S.C. Wofsy,W. A. Kaplan,andM. B. McElroy, Productionof nitrousoxide and consumptionof methaneby forest soils,Geophys.Res.Lett., 10, 1156-1159, 1983. Keller, M., W. A. Kaplan,and S.C. Wofsy, Emissionsof N20, CH4 and CO2 from tropicalforestsoils,,/. Geophys.Res., 91, 11,791-11,802, 1986. Keller, M., M. E. Mitre, and R. F. Stallard,Consumptionof atmospheric methanein soils of central Panama:Effects of agriculturaldevelopment, Global Biogeochem.Cycles,4, 21-27, 1990. Keller, M., E. Veldkamp,A.M. Weitz, and W. A. Reiners,Effect of pastureageon soiltrace-gas emissions froma deforested areaof Costa Rica, Nature, 365, 244-246, 1993. Khalil, M. A. K., R. A. Rasmussen,J. R. J. French, and J. A. Holt, The influenceof termiteson atmospherictracegases:CH4, CO2, CHCI3, N20, CO, H2, and light hydrocarbons, d. Geophys.Res., 95, 36193634, 1990. MacDonald, J. A., U. M. Skiba, L. J. Sheppard,K. J. Hargreaves,D. 23,622 PRIEMl•AND CHRISTENSEN:METHANE OXIDATION BY SOILSIN GHANA Fowler, and K. Smith, Soil environmentalvariablesaffecting CH 4 flux from a rmage of forest, moorland and agricultural soils, Biogeochemistry,34, 113-132, 1996. MacDonald, J. A., P. Eggleton, D. E. Bignelli, F. Forzi, madD. Fowler, Methane emissionby termitesand oxidationby soils, acrossa forest disturbancegradient in the Mbalmayo Forest Reserve, Cameroon, Global ChangeBiology, 4, 408-418, 1998. Menaut, J.-C., L. Abbadie, F. Lavenu, P. Loudjani, and A. Podaire,Biomassburning in West African savannas,in Global BiomassBurning: Atmospheric,Climatic, and BiosphericImplications,edited by J. S. Levine, pp. 133-142, MIT Press,Cambridge,Mass., 1991. Mosier, A. R., and J. A. Delgado, Methane and nitrous oxide fluxes in grasslandsin western Puerto Rico, Chemosphere,35, 2059-2082, 1997. Mosier, A., D. Schimel, D. Valentine, K. Bronson, and W. Parton, Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands, Nature, 350, 330-332, 1991. Mosier, A. R., J. A. Delgado, and M. Keller, Methane and nitrous oxide fluxes in an acid oxisol in westernPuerto Rico: Effects of tillage, liming and fertilization,Soil Biol. Biochem.,30, 2087-2098, 1998. Ojima, D. S., D. W. Valentine, A. R. Mosier, W. J. Parton, and D. S. Schimel, Effect of land usechangeon methaneoxidationin temperate forestand grasslandsoils,Chemosphere,26, 675-685, 1993. Poth, M., I. C. Anderson,H. S. Miranda, A. C. Miranda, and P. J. Riggan, The magnitudeand persistenceof soil NO, N20, CH4, and CO2 fluxes from burnedtropicalsavannain Brazil, GlobalBiogeochem.Cycles,9, 503-513, 1995. Potter, C. S., E. A. Davidson, and L. V. Verchot, Estimationof global biogeochemicalcontrolsand seasonalityin soil methaneconsumption, Chemosphere,32, 2219-2246, 1996. Priem& A., S. Christensen, K. E. Dobbie, and K. A. Smith, Slow increase in rate of methane oxidation in soils with time following land use changefrom arable agricultureto woodland,Soil Biol. Biochem.,29, 1269-1273, 1997. Rodhe, H., A comparisonof the contributionof various gasesto the greenhouseefI•ct, Nature, 248, 1217-1219, 1990. Sanhueza,E., L. Cfirdenas,L. Donoso,and M. Santana,Effect of plowing on CO2, CO, CH4, N20, and NO fluxesfrom tropicalsavannahsoils, d.Geophys.Res.,99, 16,429-16,434, 1994. Scharffe,D., W. M. Hao, L. Donoso,P. J. Crutzen,and E. Sanhueza,Soil fluxesand atmosphericconcentration of CO and CH4 in the northern partof the Guayanashield,Venezuela,J. Geophys. Res.,95, 22,47522,480, 1990. Seiler, W., R. Conrad, and D. Scharffe,Field studiesof methaneemission from termitenestsinto the atmospheremadmeasurements of methane uptakeby tropicalsoils,,/.Atmos.Chem.,1, 171-186,1984. Singh,J. S., S. Singh,A. S. Raghubanshi, S. Singh,A. K. Kashyap,and V. S. Reddy,Effectof soil nitrogen,carbonandmoistureon methane uptakeby dry tropicalforestsoils,Plant Soil, 196, 115-121, 1997. Singh, J. S., A. S. Raghubanshi,V. S. Reddy, S. Singh, and A. K. Kashyap,Methaneflux from irrigatedpaddyand drylandrice fields, and t¾omseasonallydry tropicalforestandsavannasoilsof India, Soil Biol. Biochem., 30, 135-139, 1998. Steudler, P. A., J. M. Melillo, R. D. Bowden, M. S. Castro, and A. E. Lugo, The effectsof naturaland humandisturbances on soil nitrogen dynamicsand trace gas fluxes in a Puerto Rican wet forest, Biotropica, 23,356-363, 1991. Steudler,P. A., J. M. Melillo, B. J. Feigl, C. Neill, M. C. Piccolo,and C. C. Cerri, Consequenceof forest-to-pasture conversionon CH4 fluxes in the Brazilian Amazon basin,J. Geophys.Res., 101, 18,547-18,554, 1996. Striegl,R. G., T. A. McConnaughey, D.C. Thorstenson, E. P. Weeks,and J. C. Woodward, Consumptionof atmosphericmethaneby desert soils, Nature, 35 7, 145-147, 1992. Zepp, R. G., W. L. Miller, R. A. Burke, D. A. B. Parsons,and M. C. Scholes,Effectsof moistureand burningon soil-atmosphere exchange of tracecarbongasesin a southernAt¾icansavanna,d. Geophys.Res., 101, 23,699-23,706, 1996. S. Christensen,Departmentof PopulationBiology, Copenhagen University,Universitetsparken 15, DK-2100 Copenhagen O, Denmark. (schristensen•zi.ku.dk) A. Priem&Centerfor MicrobialEcology,540 PlantandSoil Science, MichiganStateUniversity,EastLansing,M148824. (prieme•pilot.msu. edu) (ReceivedFebruary4, 1999;revisedJune15, 1999; accepted June17, 1999.)
© Copyright 2026 Paperzz