MembraneRestingPotentialandtheSodiumAnomaly Belowisanimageofatypicalmembrane,wheretheintercellularregion(in)inside thecellisfilledwithcytosol (waterplusorganelles,ions andproteins),andthe extracellularregion(out)is filledwithextracellularfluid (mainlyionicsolutions). RestingMembranePotential: Theinterior(in)isusually moreelectricallymorenegative thantheexterior(out): ΔV = Vin −Vout ≈ −60mV . SodiumAnomaly:Inphysics,itiswellknownthatpositiveionsmovetomore negativepotentialregion,andnegativeionsmovetomorepositivepotential.It isthennotsurprisingthattherearemorepotassiumions,K+,outside (extracellular)thaninside(intracellular),andtherearemorechlorideions,Cl− , insidethanoutside.Butitissurprisingthattherearemoresodiumions,Na+, outside(positivepotential)thaninside(negativepotential).Thisiscalledthe sodiumanomalyinPhillipNelson’stextbook.Databelowshowstheion concentrationofatypicalliving(invivo)cell. DataofmamaliancellMembraneRestPotential ΔV = −86mV ion z(valence) Intracellularci,in,mM Extracellularci,out,mM ViNersst,mV K+ +1 140 + Na +1 4 - Cl -1 4 NernstPotential: 4 140 120 ? ? ? InclassandinthetextbookwecalculatetheNernst’spotential Vi Nernst = kBT ci,out . ln ze ci,in = −90mV ;Na+, VNaNernst = 89mV ;Cl-, VClNernst = −86mV .Note Forabovedata:K+, VKNernst + + − thattheyaredifferentthanthemembranepotential ΔV = −86mV .Onthenextpage, Iwillillustratewhythisisasignificantpoint. Nernst Relation Consider the distribution of charge in the presence of a voltage (battery) Considerthedistributionofchargeinthepresenceofavoltage(battery): a NB: q has sign, here it is positive The energy difference between charges on the top and bottom plate is: So in the presence of an applied voltage charges will redistribute in this way Thephysicalinterpretationoftheaboveisthatinthepresenceofanapplied voltageΔV ,theequilibriumchargedistributionwillbeasthediagramabovewith OR, if there is a difference in charge distribution, there will be a voltage morepositiveionsonthenegativebottomplate.Anotherinterpretationisthatif thereischargedistributionasintheabovefigure,thentherewillbeavoltage C kT ΔV = − B ln top .Sincethetopismorepositivethannegativeweidentifythetop q C bottom asextracellular(out)andthebottomasintracellular(in),soforcellswehave kT C ΔV = − B ln out = −Vi Nernst .BasicallythepotentialΔV ,depictedaboveisnegativeof q C in theNernstpotentialequation Vi Nernst . InterpretationofNernstPotential:FromOhm’slawweknowthatanapplied voltagewillinduceacurrent,ΔV = IR .InthediagramaboveyheNernstpotential V Nernst calculatedfortheabovedistributionistheappliedvoltageneededtoprevent i aflowofcharge–i.e.acurrent. Whathappensinlivingcells?Intheabovedata(previouspage)weseethatin < ΔV generaltheNernstpotentialisdifferentfromthemembranepotential, VKNernst + Nernst Nernst and VNa+ > ΔV ,but VCl − = ΔV .Thismeansthattheremustbealeakcurrent,as willbeillustratedinthenextexample. Ionic current: IMPORTANTPOINTS: 1.Intheabovedefinitiontheflowofionsispositiveifitisfromtheinside(in)to outside(out),butinclassnotesweassumethatpositiveflowisfromoutside(out) toinside(in),sotheequationshouldbeforourcourseandassignment: I = Agi Vi Nernst − ΔV = Vi Nernst − ΔV / Ri ,whereAistheeffectivecrosssectionarea, i and Ri = Agi istheresistanceoftheioni(Na+,K+,Cl−). 2.Notethattheconductanceis G = 1 / R andtheconductanceperunitareais g = G / A .Henceg = AG = A / R ,whichishowwederivedtheaboveequation. 3.FornegativeionssuchasCl−,theionflowdirectionisreversedasdefinedabove. = ΔV isunusal. 4.Ingeneral, ΔV ≠ Vi Nernst .Thedataabove, VClNernst − ( ) ( )
© Copyright 2025 Paperzz