TE‐18 Name: SequencesandSeries 3.1H Ready,Set,Go! Ready Topic:Findingvaluesforapattern 1. BobCooperwasbornin1900.By1930hehad3sons,allwiththeCooperlastname.By1960eachof Bob’s3boyshadexactly3sonsoftheirown.Bytheendofeach30yeartimeperiod,thepatternofeach Cooperboyhavingexactly3sonsoftheirowncontinued.HowmanyCoopersonswereborninthe30 yearperiodbetween1960and1990? 27 2. Createadiagramthatwouldshowthispattern. Year 1900 1930 1960 1990 2020 #ofsons 1 3 9 27 81 3. PredicthowmanyCoopersonswillbebornbetween1990and2020,ifthepatterncontinues. 81 4. TrytowriteanequationthatwouldhelpyoupredictthenumberofCoopersonsthatwouldbeborn between2020and2050.Ifyoucan’tfindtheequation,explainitinwords. 5. HowmanyCoopersonswereborninallfrom1900to2020? 121 Topic:FunctionNotation Foreachofthefollowing,find , and 7. 3 2 6. 2 , , , 8. 2 1 3 , , Completeeachtable. 9. 2nd 3rd 4th 5th Term 1st Value 66 50 34 18 10. 2nd 3rd 4th 5th Term 1st Value 3 9 27 81 SDUHSDMath1Honors , 6th 7th 6th 8th 7th 8th TE‐19 Set Topic:Completingatable Fillinthetable.Thenwriteasentenceexplaininghowyoufiguredoutthevaluestoputineach cell.Explainhowtofigureoutwhatwillbeincell#8. 11. Yourunabusinessmakingbirdhouses.Youspend$600tostartyourbusiness,anditcostsyou$5.00 tomakeeachbirdhouse. #ofbirdhouses 0 1 2 3 4 5 6 Totalcosttobuild 600 605 610 615 620 625 630 Explanation:Forthefirstbirdhouseitcosts$600tostartthebusiness,plus$5forthefirst birdhouse,andafterthatitisjust$5moreforeachadditionalbirdhouse.Thecostformaking8 birdhousesisthen$ ,or$640. 12. Youborrow$500fromarelative,andyouagreetopaybackthedebtatarateof$15permonth. #ofmonths 1 2 3 4 5 6 7 Amountofmoneyowed 500 485 470 455 440 425 410 Explanation:Onmonth#1youowethetotal,$500,theneverymonthafterthatyouowe$15less becauseyoupaid$15towardthedebtattheendofeachmonth.Onthe8thmonth,theamountof moneyowedwouldbe ,or$395 Topic:Evaluatingequations Evaluatethefollowingequationswhen , , , , .Organizeyourinputsandoutputsintoa tableofvaluesforeachequation.Letxbetheinputandybetheoutput. 14. 3 15. 3 13. 4 x y y y x x 1 4 1 1 2 16 2 2 3 4 3 3 4 256 4 4 5 1024 5 5 SDUHSDMath1Honors TE‐20 Go Topic:Goodviewingwindow Whensketchingagraphofafunction,itisimportantthatweseekeypoints.Forlinearfunctions,wewanta windowthatshowsimportantinformationrelatedtothestory.Often,thismeansincludingboththex‐andy‐ intercepts Findanappropriategraphingwindowforeachofthefollowinglinearfunctions.Fillintheblanks showingtheloweranduppervaluesandincludethescaleforeachaxis. YoumayuseanonlinegraphingutilitysuchasDesmos(https://www.desmos.com/calculator)or MATHPAPA(https://www.mathpapa.com/calc.html?q=) Answersmayvary.Sampleanswersprovidedbelow: 17. 7 3 14 1 16. x: , byy: , x: , byy: , x‐scale:1 y‐scale:1 x‐scale: y‐scale: 18. 3 5 x: , x‐scale:1 12 byy: , y‐scale:1 SDUHSDMath1Honors 15 19. x: , x‐scale:2 10 45 byy: , y‐scale:25 TE‐33 Name: SequencesandSeries 3.2H Ready,Set,Go! Ready Topic:Writetheequationofalinegiventwopoints. Writeanequationofthelinethatgoesthroughthegiventwopoints. 1. 5, 2 and 7, 0 2. 2, 4 and 2, 6 Set Topic:Recursiveandexplicitfunctionsofarithmeticsequences Belowyouaregivenvarioustypesofinformation.Writetherecursiveandexplicitfunctionsforeach sequence.Finally,grapheachsequence,makingsureyouclearlylabelyouraxes. 4. EachdayTaniadecidestodosomethingnicefor 3. 2, 4, 8, 16, … 2strangers.Writerecursiveandexplicit equationsthatrepresentthenumberofstrangers Taniathatdoessomethingniceforeachday(not totalnumberofstrangers). Recursive: , Explicit: SDUHSDMath1Honors Recursive: , Explicit: TE‐34 5. Clairehas$300inanaccount.Shedecidessheis goingtotakeouthalfofwhat’sleftinthereatthe endofeachmonth. 6. Taniacreatesachainletterandsendsittofour friends.Eachdayeachfriendistheninstructed tosendittofourfriendsandsoforth. Recursive: , Recursive: , Explicit: Explicit: 7. Recursive: , Explicit: Topic:Summationnotationforaseries 8. Writeoutwhatismeantby: b. ∑ a. ∑ 3 9. Writethefollowinginsummationnotation: a. 3 3 3 3 b. 2 4 6 8 10 ∑ ∑ 10. Arethefollowingseriesequivalent?Explainyourreasoning. and ∑ Yes.Bothsequencesrepresent: ∑ SDUHSDMath1Honors 12 ⋯ TE‐35 Go Topic:Arithmeticandgeometricsequences Determineifthefollowingsequencesarearithmetic,geometric,both,orneither. 11. 109,94,79,64 Arithmetic 12. Christinedid41sit‐upsonTuesday,44sit‐upsonWednesday,46sit‐upsonThursday,47sit‐upson Friday. Neither 13. 1,9,81,729,… Geometric 14. Whilesortingchangeintoapiggybank,Ruthput14coinsinthefirstpiggybank,14coinsinthesecond piggybank,14coinsinthethirdpiggybank,and14coinsinthefourthpiggybank. Both 15. 6, 24, 144, 864 Geometric 16. Abookshelfhas7shelvesofdifferentwidths.Eachshelfisnarrowerthantheshelfbelowit.Thebottom threeshelvesare36in.,31in.,and26in.wide.Theshelfwidthsdecreasebythesameamountfrom bottomtotop. a. Whatisthewidthofthetopshelf? 6inches b. Whatisthetotalshelfspaceofallsevenshelves? 147inches SDUHSDMath1Honors TE‐48 Name: SequencesandSeries 3.3H Ready,Set,Go! Ready Topic:Arithmeticandgeometricsequences Findthemissingvaluesforeacharithmeticorgeometricsequence.Thensayifthesequencehasa constantdifferenceoraconstantratio,andsaywhattheconstantdifference/rateis. 1. 5,10,15,______,25,30… 2. 20,10,______,2.5,______,… Constantdifferenceoraconstantratio? Constantdifferenceoraconstantratio? ConstantDifference ConstantRatio Theconstantdifference/ratiois Theconstantdifference/ratiois 3. 2,5,8,______,14,_____,… 4. 30,24,_____,12,6,… Constantdifferenceoraconstantratio? Constantdifferenceoraconstantratio? ConstantDifference ConstantDifference Theconstantdifference/ratiois Theconstantdifference/ratiois Set Topic:Determinerecursiveequations Twoconsecutivetermsinanarithmeticsequencearegiven.Findtheconstantdifferenceand therecursiveequation. 5. If 3 5and 4 8. 5 , 6 RecursiveFunction: , 6. If 2 20and 3 12. 4 , 5 RecursiveFunction: , SDUHSDMath1Honors TE‐49 Topic:Recursiveandexplicitequations Determinewhethereachsituationrepresentsanarithmeticorgeometricsequenceandthenfindthe recursiveandexplicitequationforeach. 7. 2, 4, 6, 8, … 8. Time Numberof ArithmeticorGeometric?Arithmetic (days) Cells 1 5 Recursive: , 2 8 3 12.8 4 20.48 Explicit: ArithmeticorGeometric?Geometric Recursive: . , . Explicit: 9. Camiinvested$6,000dollarsintoanaccount 10. Scottdecidestoaddrunningtohisexercise thatearns10%interesteachyear. routineandrunsatotalofonemilehisfirst week.Heplanstodoublethenumberofmileshe runseachweek. ArithmeticorGeometric?Geometric ArithmeticorGeometric?Geometric Recursive: , . Recursive: , Explicit: . Explicit: 11. Vanessahas$60tospendonridesattheState 12. Michellelikeschocolatesomuchthatsheeats Fair.Eachridecost$4. iteverydayanditalways3morepiecesthan thepreviousday.Sheate3piecesonday1. ArithmeticorGeometric?Arithmetic ArithmeticorGeometric?Arithmetic Recursive: , Recursive: , Explicit: Explicit: SDUHSDMath1Honors TE‐50 Go Topic:Evaluateusingfunctionnotation Findeachvalue. 13. 5 .Find 2 . 25 14. 2 .Find 3 . 15. 3 4 1 .Find 5 and 6 . , Topic:Solvingsystemsoflinearequations Solvethesystemofequationsusingamatrix. 2 10 16. 4 5 , 18. 5 6 , 4 4 3 30 2 18 3 12 4 2 , 6 InfinitelyManySolutions SDUHSDMath1Honors 7 21 3 19. 17. TE‐61 Name: SequencesandSeries 3.4H Ready,Set,Go! Ready Topic:ConstantRatios Findtheconstantratioforeachgeometricsequence. 1. 2,4,8,16,… 3. , 1, 2, 4, 8, … 2. 4. 10,5,2.5,1.25,… 5, 10, 20, 40, … Set Topic:Recursiveandexplicitequations Fillintheblanksforeachtableandthenwritetherecursiveandexplicitequationforeachsequence. 5. Table1 n 1 5 2 7 3 9 4 11 5 13 Recursive: 6. Table2 n 1 2 3 4 5 , Explicit: 7. Table3 2 4 6 8. Table4 n 1 2 3 4 5 n 1 2 3 4 5 3 9 27 81 243 27 9 3 1 Recursive: , Explicit: Recursive: , Explicit: or SDUHSDMath1Honors or Explicit: Recursive: , ⋅ TE‐62 Topic:Subscriptnotationforsequences Othertextbooksmayusesubscriptnotationtowriterulesforsequences.Usetheexamplesbelowto writetherecursiveandexplicitrulesforthefollowingsequences. ExampleSequence FunctionNotation SubscriptNotation 3, 5, 7, 9, … Recursive: Explicit: 1 3, 9, 27, 81, … Recursive: Explicit: 1 3, 2 3, 3 1 2 1 1 ⋅ 3 Recursive: Explicit: 2 Recursive: Explicit: 3, 3 3, 2 1 ⋅ 3 9. 22, 19, 16, … 10. 1, 5, 25, … , Recursive: , ⋅ Recursive: Explicit: Explicit: Topic:Arithmeticseries 11. Findthesumofthefirst12termsofthesequence 2 10 12. Findthesum:∑ 3 1 672 13. Findthesumofthefirst150termsofthesequence20,15,10,5,… , 14. Findthesumofthefirst200evennumbers. 402,000 15. TheAgnesiHighSchoolauditoriumhasexactly26rowsofseats.Therowsarelabeled,inorder,fromthe frontoftheauditoriumtothebackfromAthroughZ.Thereare8seatsintherowA.Eachrowafterthe firstrowhastwomoreseatsthanthepreviousrow.Thereare10seatsinrowB,12seatsinrowCandso on. a. HowmanyseatsarethereinrowZ? Thereare58seatsinRowZ. b. WhatisthetotalnumberofseatsintheAgnesiHighSchoolauditorium? 858seats SDUHSDMath1Honors TE‐63 16. Thefirstfigurecontainsonesegment.Foreachsuccessivefigure,sixsegmentsreplaceeachsegment. Thisisanexampleofafractal. a. Howmanysegmentsareineachofthefirstfourfiguresofthesequence? , , , b. Writearecursivedefinitionforthesequence. , ⋅ Go Topic:Graphinglinearequationsandlabelingyouraxes. Graphthefollowinglinearequations.Labelyouraxes. 17. 4 7 18. 19.2 5 7 10 SDUHSDMath1Honors 20. 3 7 TE‐77 Name: SequencesandSeries 3.5H Ready,Set,Go! Ready Topic:Arithmeticandgeometricsequences Foreachsetofsequences,findthefirstfiveterms.Comparearithmeticsequencesandgeometric sequences.Whichgrowsfaster?When? 2,commondifference,d =3 1. Arithmeticsequence: 1 Geometricsequence: 1 2,commonratio,r=3 Arithmetic: Geometric: 1 1 2 2 3 3 4 4 54 5 5 Whichvaluedoyouthinkwillbemore, 100 or 100 ?Why? becausethevalueincreasesmuchfasterwhenmultiplyingtheprevioustermbythesame valueasopposedtoaddingthesamevaluetothepreviousterm. 2,commondifference,d =10 2. Arithmeticsequence: 1 Geometricsequence: 1 2,commonratio,r=3 Geometric: Arithmetic: 1 1 2 2 3 3 4 4 5 5 Whichvaluedoyouthinkwillbemore, 100 or 100 ?Why? becausethevalueincreasesmuchfasterwhenmultiplyingtheprevioustermbythesame valueasopposedtoaddingthesamevaluetothepreviousterm,evenifthevalueaddedismuch largerthanthevaluemultipliedbyasseeninthisexample. SDUHSDMath1Honors TE‐78 Set Topic:Arithmeticsequences Eachofthetablesbelowrepresentsanarithmeticsequence.Findthemissingtermsinthesequence, showingyourmethod. 3. Table1 n 1 2 3 7.5 3 12 . 4. Table2 5. Table3 6. Table4 n n n 1 2 1 24 1 16 2 10 2 15 2 12 3 18 3 6 3 8 4 26 4 4 4 5 0 7. Table5 n 2 3 4 5 6 27 22 17 32 12 Topic:Geometricsequences Eachofthetablesbelowrepresentsageometricsequence.Findthemissingtermsinthesequence, showingyourmethod. 8. Table1 n 1 2 3 3 6 12 , SDUHSDMath1Honors TE‐79 9. Table2 n 1 2 3 4 10. Table3 , 12. Table5 n 2 6 18 54 n 1 2 3 4 n 1 2 3 4 5 5 10 20 40 , 3 18 11. Table4 4 54 4 12 36 108 324 , 5 162 6 486 , Go Topic:Sequences Determinetherecursiveandexplicitequationsforeach(ifthesequenceisnotarithmeticor geometric,tryyourbest).Expressanswersinbothfunctionsubscriptnotation. 13. 5, 9, 13, 17, … Thissequenceis:Arithmetic,Geometric,Neither RecursiveEquation: , ExplicitEquation: , 14. 60, 30, 0, 30, … Thissequenceis:Arithmetic,Geometric,Neither RecursiveEquation: , ExplicitEquation: , Thissequenceis:Arithmetic,Geometric,Neither 15. 60, 30, 15, , … RecursiveEquation: , SDUHSDMath1Honors , ⋅ ExplicitEquation: TE‐80 16. (Thepercentageoftilesshadedblack) Thissequenceis:Arithmetic,Geometric,Neither RecursiveEquation: , , ⋅ ExplicitEquation: 17. 4, 7, 12, 19, … Thissequenceis:Arithmetic,Geometric,Neither RecursiveEquation: , ExplicitEquation: , **Note:Studentsarenotexpectedtobeabletowritetherecursiveorexplicitequationsfor question15atthispoint** 18. Writethefollowingseriesinsummationnotation:20 14 8 2 4 10 ∑ 19. Findthesumof∑ 2 60 SDUHSDMath1Honors TE‐87 Name: SequencesandSeries 3.6H Ready,Set,Go! Ready Topic:Comparinglinearequationsandarithmeticsequences 1. Describesimilaritiesanddifferencesbetweenlinearequationsandarithmeticsequences. Similarities Differences Linearequationsrepresentallsolutions Bothhaveaconsistentchangefor toallx‐values,whereasarithmetic everyinterval. sequenceschooseonlyspecificvalues. Bothcanberepresentedasfunctions ofavariable. Bothhavepointslieonaline. Set Topic:representationsofarithmeticsequences Usethegiveninformationtocompletetheotherrepresentationsforeacharithmeticsequence. Graph: 2. RecursiveEquation: , ExplicitEquation: Table: Days Cost 1 8 2 16 3 24 4 32 CreateaContext: Itcosts$8perdaytorentakayak. SDUHSDMath1Honors TE‐88 3. RecursiveEquation: Graph: 1 4, 1 3 ExplicitEquation: Table: Hour Cost 1 4 2 7 3 10 4 13 CreateaContext: Itcostsaflatfeeof$1tocheckoutskates,and then$3perhourfortherental. 4. RecursiveEquation: Graph: , ExplicitEquation: 4 5 1 Table: Days Cost 1 4 2 9 3 14 4 19 CreateaContext: ItCosts$4torentsnorkelgearonthe firstday,andthen$5everydayafter that. SDUHSDMath1Honors TE‐89 5. RecursiveEquation: , ExplicitEquation: Graph: Table: Row 1 2 3 4 #ofseats 14 16 18 20 CreateaContext: Janetwantstoknowhowmanyseatsare ineachrowofthetheater.Jamalletsher knowthateachrowhas2seatsmorethan therowinfrontofit.Thefirstrowhas14 seats. Topic:Applicationofarithmeticandgeometricseries Writeaseriesrepresentationusingsummationnotationforeachscenarioandthenfindthesum. 6. Logsarestackedinapilewith24logsonthebottomrowand15onthetoprow.Thereare10rowsinall witheachrowhavingonemorelogthantheoneaboveit.Howmanylogsareinthestack? ∑ 7. Eachhour,agrandfatherclockchimesthenumberoftimesthatcorrespondstothetimeofday.For example,at3:00,itwillchime3times.Howmanytimesdoestheclockchimeinaday? ⋅∑ 8. Acompanyisofferingajobwithasalaryof$30,000forthefirstyearanda5%raiseeachyearafterthat. Ifthat5%raisecontinueseveryyear,findthetotalamountofmoneyyouwillhaveearnedbytheendof your5thyear. $ , . ∑ , . SDUHSDMath1Honors TE‐90 Go Topic:Writingexplicitequations Giventherecursiveequationforeacharithmeticsequence,writetheexplicitequation. 9. 1 2; 1 8 10. 5 1 ; 1 0 11. 1 1; 1 SDUHSDMath1Honors TE‐91 Name: SequencesandSeries Review Usethegiveninformationtostateasmuchaspossibleabouteachsequence.Youranswershouldinclude: typeofsequence,thecommondifferenceorcommonration,atableofatleast5terms,agraph,therecursive rule,andtheexplicitrule. Commondifference/ratio: 3 1. Type:Arithmetic n 1 2 2 5 3 8 4 11 5 14 Recursiverule: Explicitrule: 1 2, 1 3 2. Type:Geometric Recursiverule: , n 0 1 2 3 4 Commondifference/ratio:2 3 6 12 24 48 Explicitrule: 3∙2 SDUHSDMath1Honors TE‐92 3. Type:Arithmetic Recursiverule: , n 1 2 3 4 5 Commondifference/ratio: 2 3 5 7 9 11 Explicitrule: 4. Type:Geometric Recursiverule: , n 1 2 3 4 5 40 20 10 5 2.5 CommonRatio= Explicitrule: 5.Explainhowyoutellifasequenceisarithmeticandifasequenceisgeometric. Ifasequenceisarithmeticthereisacommondifferencethatisaddedorsubtractedfromthe previousvaluetogetthenextvalue,whereas,ifasequenceisgeometricthereisacommonratiothat ismultipliedbythepreviousvaluetogetthenextvalue.Inaddition,anarithmeticsequencecreates alinearfunction,whereasageometricsequencecreatesanexponentialfunction. SDUHSDMath1Honors TE‐93 For#6‐8,determineifeachsequenceisarithmeticorgeometric.Findthevaluesofthenexttwo terms.Thenwritetheexplicitandrecursiveformulasforeachsequence. 6. 90, 30, 10, , … ArithmeticorGeometric Next2terms: , RecursiveFormula: , ExplicitFormula: 7. 42, 34, 26, 18, … ArithmeticorGeometric Next2terms:10,2 , ExplicitFormula: RecursiveFormula: 8. 6, 13, 20, 27, … ArithmeticorGeometric Next2terms:34,41 , ExplicitFormula: RecursiveFormula: 9. Findthemissingtermsofthearithmeticsequencebelow.Besuretoshowallwork. n 1 2 3 4 5 7 10. Findthemissingtermsofthegeometricsequencebelow.Besuretoshowallwork. n 1 2 3 4 5 . 7 56 , 11. Findthemissingtermsofthegeometricsequencebelow.Besuretoshowallwork. n 1 2 3 4 5 972 12 , SDUHSDMath1Honors 6 18 6 6 TE‐94 12. Findthesumofthefirst50multiplesof6. , 13. Achildbuildingatowerwithblocksuses15forthebottomrow.Eachrowhas2fewerblocksthanthe previousrow.Supposethatthereare8rowsinthetower. a. Howmanyblocksareusedforthetoprow? 1block b. Whatisthetotalnumberofblocksinthetower? 64blocks ? 14. Whatisthecommonratiooftheseriesmodeledby∑ 4 3 15. Howmanytermsareinthegeometricsequencehavingafirsttermof2,alasttermof32,andacommon ratioof 2? 5terms 16. Asnailiscrawlingstraightupawall.Thefirsthouritclimbs16inches,thesecondhouritclimbs12 inches,andeachsucceedinghour,itclimbsonlythree‐fourthsthedistanceitclimbedtheprevioushour. Assumethepatterncontinues. a. Howfardoesthesnailclimbduringthefifthhour? . inches b. Whatisthetotaldistancethesnailhasclimbedinfivehours? . inches c. Expressthetotaldistancewithsummationnotation. ∑ SDUHSDMath1Honors TE‐95 Module4HIntroductionHomework ThefollowingproblemsareintendedforstudentstoworkonaftertheModule3HTest.Thefirstfour problemsintroducethebeginningtasksofModule4H.Theproblemsaremeanttobedoneontheirownand willbediscussedduringthewarmupthenextclass.Thefollowingpageisblankfortheteachertocopyand givetoeachstudentafterthetest.Belowarethesolutionsforthechallengeproblems. For#1‐4,createamathematicalmodelforthatincludesatable,graph,andequation: 1. Mylittlesister,Savannah,isthreeyearsold.Shehasapiggybankthatshewantstofill.Shestarted withfivepenniesandeachdaywhenIcomehomefromschool,sheisexcitedwhenIgiveher threepenniesthatareleftoverfrommylunchmoney.Createamathematicalmodelforthe numberofpenniesinthepiggybankondayn. whereprepresentsthenumberofpenniesSavannahhasandnrepresentsthenumber ofdaysthathavepassed. Checkfortable&graph. 2. Ourfamilyhasasmallpoolforrelaxinginthesummerthatholds1500gallonsofwater.Idecidedtofill thepoolforthesummer.WhenIhad5gallonsofwaterinthepool,IdecidedthatIdidn’twanttostand outsideandwatchthepoolfill,soIhadtofigureouthowlongitwouldtakesothatIcouldleave,but comebacktoturnoffthewaterattherighttime.Icheckedtheflowonthehoseandfoundthatitwas fillingthepoolatarateof2gallonseveryfiveminutes.Createamathematicalmodelforthenumberof gallonsofwaterinthepoolattminutes. . Checkfortable&graph. 3. I’mmoresophisticatedthanmylittlesistersoIsavemymoneyinabankaccountthatpaysme3% interestonthemoneyintheaccountattheendofeachmonth.(IfItakemymoneyoutbeforetheendof themonth,Idon’tearnanyinterestforthemonth.)Istartedtheaccountwith$50thatIgotformy birthday.CreateamathematicalmodeloftheamountofmoneyIwillhaveintheaccountaftermmonths. . Checkfortable&graph. SDUHSDMath1Honors TE‐96 4. Attheendofthesummer,Idecidetodraintheswimmingpoolthatholds1500gallonsofwater.I noticedthatitdrainsfasterwhenthereismorewaterinthepool.Thatwasinterestingtome,soI decidedtomeasuretherateatwhichitdrains.Ifoundthatitwasdrainingatarateof3%everyminute. Createamathematicalmodelofthegallonsofwaterinthepoolattminutes. . Checkfortable&graph. Module3ChallengeProblems 5. Considerthepatternofsquaregridsshown.ThesumofthenumbersinthesquaregridatStage3is27. Ifthepatterncontinues,whatwillbethesumofthenumbersinthesquaregridatStage7? ThesumofthenumbersattheStages1through4are1,8,27and64,respectively.Noticethat , , , .Thesesumsforma thesenumbersareallperfectcubes: sequencewherethenthtermofthesequenceis .Therefore,thesumofthenumbersatStage7 willbe . 6. Thesumofalistofsevenpositiveintegersis42.Themean,medianandmodeareconsecutiveintegers, insomeorder.Whatisthelargestpossibleintegerinthelist? Wearetoldthatthesumofthesevenintegersis42,soitfollowsthatthesenumbershavea .Thus,therearethreepossibilitiesfortheconsecutivemeasuresofcentral meanof tendency4,5and6;5,6and7;6,7and8.Butthevalues4,5and6willyieldthelargestpossible integerinsuchalist.Sincethemeanis6,themodeandmediancouldbe4and5,respectively, orviceversa. Suppose,4isthemodeand5isthemedian,togetthelargestintegerwewouldhavetheseries .Thisgivesavalueof . Suppose4isthemedianand5isthemode.Sincethemeandoesnotneedtobeoneoftheintegers inthelist,togetthelargestintegerwewouldhavetheseries .This givesavalueof . Therefore,thelargestpossibleintegerinthelistis22. SDUHSDMath1Honors
© Copyright 2026 Paperzz