CIVL361 Transportation Engineering Horizontal and Spiral Curves Dr. Mehmet M. Kunt 04/11/2013 Horizontal Curve Types •Simple •Compound •Reverse Curve Dr. Mehmet M. Kunt 2 Dr. Mehmet M. Kunt 3 AZIMUTH AND BEARING Dr. Mehmet M. Kunt 4 Azimuth and Bearing Dr. Mehmet M. Kunt 5 EQUATIONS Dr. Mehmet M. Kunt 6 Equations for Horizontal Curves T R tan 2 Tangent Example: A horizontal curve has a radius of 320 m, and deflection angle of Δ = 24 o. Please compute L, T, M, E, C. Solution: T = 320 * tan( 24 /2.)= 68.02 m Dr. Mehmet M. Kunt 7 Equations for Horizontal Curves M R R cos Middle distance 2 Example: A horizontal curve has a radius of 320 m, and deflection angle of Δ = 24 o. Please compute L, T, M, E, C. Solution: M = 320 - 320 *cos( 24 /2.)= 6.99 m Dr. Mehmet M. Kunt 8 Equations for Horizontal Curves E R R cos 2 External Distance Example: A horizontal curve has a radius of 320 m, and deflection angle of Δ = 24 o. Please compute L, T, M, E, C. Solution: E = 320 /cos( 24 /2.) - 320 = 7.15 m Dr. Mehmet M. Kunt 9 Equations for Horizontal Curves C 2R sin 2 Chord Example: A horizontal curve has a radius of 320 m, and deflection angle of Δ = 24 o. Please compute L, T, M, E, C. Solution: chord = 2* 320 *sin( 24 /2.)= 133.06 m Dr. Mehmet M. Kunt 10 Equations for Horizontal Curves L Rc rad Length Example: A horizontal curve has a radius of 320 m, and deflection angle of Δ = 24 o. Please compute L, T, M, E, C. Solution: L = 320 *( 24 /(180./pi))= 134.04 m Dr. Mehmet M. Kunt 11 Example For a horizontal curve with radius of 350 meters and deflection angle of 24 degrees please obtain the T, M, E, C and L values. SOLUTION >>> hcall(350,24,0) Horizontal Curve Parameter Computations INPUT ====== Radius = 350 m Deflection Angle = 24 degrees COMPUTATIONS ============ Tangent, T = 74.4 m Function: T = hct(Radius,delta) Middle distance, M = 7.6 m Function: M = hcm(Radius,delta) External distance, E = 7.8 m Function: E = hce(Radius,delta) Chord, C = 145.5 m Function: C = hcchord(Radius,delta) Length of the curve,L = 146.6 m Function: L = hcl(Radius,delta) Dr. Mehmet M. Kunt 12 Plot of a Horizontal Curve Dr. Mehmet M. Kunt 13 L Dr. Mehmet M. Kunt 14 T Dr. Mehmet M. Kunt 15 M Dr. Mehmet M. Kunt 16 E Dr. Mehmet M. Kunt 17 Example For a horizontal curve with radius of 350 meters and deflection angle of 24 degrees please obtain the T, M, E, C and L values. SOLUTION >>> hcall(350,24,1) Radius = 350 Deflection angle = 24 Tangent = 74.4 Middle distance = 7.6 External distance = 7.8 Chord = 145.5 Length of the curve = 146.6 Dr. Mehmet M. Kunt 18 Example For a horizontal curve with radius of 350 meters and deflection angle of 24 degrees please obtain the T, M, E, C and L values. SOLUTION >>> hcall(350,24,2) Input: Radius, deflection angle 350 24 T,M,E,C,L 74.4 7.6 7.8 145.5 146.6 Dr. Mehmet M. Kunt 19 Deflection Angle x dx 2 R RAD cx 2R sin d x Dr. Mehmet M. Kunt 20 Example • Prepare a table giving chords and deflection angles for staking out a 400-m radius circular curve with a total deflection angle of 30o . The TC point is at station 44+60. Give the deflection angles and chords for 0.25L, 0.5L, 0.75L and L. x dx 2 R RAD L Rc rad cx 2R sin d x Dr. Mehmet M. Kunt 21 Example Prepare a table giving chords and deflection angles for staking out a 400-m radius circular curve with a total deflection angle of 30o . The TC point is at station 44+60. Give the deflection angles and chords for 0.25L, 0.5L, 0.75L and L. x dx 2 R RAD cx 2R sin d x L Rc rad SOLUTION X values are equal to 0.25 L, 0.5L, 0.75L and L L = 400*30/57.295 = 209.44 m X = 0.25L =52.36 m dx = (52.36/(2*400)) = 0.0654 cx = 2*400*sin(0.0654) = 52.32 m Dr. Mehmet M. Kunt 22 Example Prepare a table giving chords and deflection angles for staking out a 400-m radius circular curve with a total deflection angle of 30o . The TC point is at station 44+60. Give the deflection angles and chords for 0.25L, 0.5L, 0.75L and L. x dx 2 R RAD cx 2R sin d x L Rc rad SOLUTION And all of the calculations can be computed as follows: Length of the Station X 44+60 0.0 45+12 52.36 45+64 104.72 46+16 157.08 46+68 209.44 curve = dx 0.0000 0.0654 0.1309 0.1963 0.2618 Dr. Mehmet M. Kunt 209.44 m 2.09 sta cx 0.000 52.323 (computed in previous 104.421 156.073 207.056 page) 23 Dr. Mehmet M. Kunt 24 Stopping Sight Distance on Horizontal Curves Dr. Mehmet M. Kunt 25 Dr. Mehmet M. Kunt 26 SUPERELEVATION Dr. Mehmet M. Kunt 27 Superelevation V2 Rc 127 f e Rc = Radius of the curve V = Speed of the vehicle, km/h f = coefficient of side friction e = superelevation rate Dr. Mehmet M. Kunt 28 Table 4.5 Values of side friction recommended by AASHTO Design Speed, km/h 30 40 50 60 70 80 90 100 110 120 Maximum side friction factor 0.17 0.17 0.16 0.15 0.14 0.14 0.13 0.12 0.11 0.09 Dr. Mehmet M. Kunt 29 Table 4.6 Recommended minimum radius of curvature Design Speed, km/h 30 40 50 60 70 80 90 100 110 120 Minimum curve radius, m 35 60 100 150 215 280 375 490 635 870 Dr. Mehmet M. Kunt 30 Dr. Mehmet M. Kunt 31 SPIRAL CURVES Dr. Mehmet M. Kunt 32 Dr. Mehmet M. Kunt 33 Spiral of Theodorus http://en.wikipedia.org/wiki/Spiral_of_Theodorus Dr. Mehmet M. Kunt 34 Spiral curve parameters Ls s 2 Rc A Ls Rc L5s X s Ls 40A 4 L3s L7s Ys 2 6 6A 336 A Dr. Mehmet M. Kunt 35 ; Spiral curve parameters s Ls 2 Rc A Ls Rc X s Ls L5s L3s L7s Y 40A 4 s 6 A 2 336 A 6 p Ys Rc 1 cos s T ' Rc p tan 2 k X s Rc sin s Lc Rc rad Ls c X 2 Y 2 Y d tan X 1 Dr. Mehmet M. Kunt 36 Problem • A roadway goes from tangent alignment to a 250-m circular curve by means of a 80-m-long spiral transition curve. The deflection angle between the tangents is 45°. Use formulas to compute Xs Ys p, and k. Assume that the station of the P.L, measured along the back tangent, is 250 + 00, and compute the stations of the TS, SC, CS, and ST. Dr. Mehmet M. Kunt 37 Solution Dr. Mehmet M. Kunt 38 Dr. Mehmet M. Kunt 39 Dr. Mehmet M. Kunt 40 Dr. Mehmet M. Kunt 41
© Copyright 2026 Paperzz