Horizontal and Spiral Curves

CIVL361 Transportation
Engineering
Horizontal and Spiral Curves
Dr. Mehmet M. Kunt
04/11/2013
Horizontal Curve Types
•Simple
•Compound
•Reverse Curve
Dr. Mehmet M. Kunt
2
Dr. Mehmet M. Kunt
3
AZIMUTH AND BEARING
Dr. Mehmet M. Kunt
4
Azimuth and Bearing
Dr. Mehmet M. Kunt
5
EQUATIONS
Dr. Mehmet M. Kunt
6
Equations for Horizontal Curves

T  R tan 
2
Tangent
Example:
A horizontal curve has a radius of 320
m, and deflection angle of Δ = 24 o.
Please compute L, T, M, E, C.
Solution:
T = 320 * tan( 24 /2.)= 68.02 m
Dr. Mehmet M. Kunt
7
Equations for Horizontal Curves

M  R  R cos  Middle distance
2
Example:
A horizontal curve has a radius of 320
m, and deflection angle of Δ = 24 o.
Please compute L, T, M, E, C.
Solution:
M = 320 - 320 *cos( 24 /2.)= 6.99 m
Dr. Mehmet M. Kunt
8
Equations for Horizontal Curves
E
R
R

cos 
2
External Distance
Example:
A horizontal curve has a radius of 320
m, and deflection angle of Δ = 24 o.
Please compute L, T, M, E, C.
Solution:
E = 320 /cos( 24 /2.) - 320 = 7.15 m
Dr. Mehmet M. Kunt
9
Equations for Horizontal Curves

C  2R sin 
2
Chord
Example:
A horizontal curve has a radius of 320
m, and deflection angle of Δ = 24 o.
Please compute L, T, M, E, C.
Solution:
chord = 2* 320 *sin( 24 /2.)= 133.06 m
Dr. Mehmet M. Kunt
10
Equations for Horizontal Curves
L  Rc  rad
Length
Example:
A horizontal curve has a radius of 320
m, and deflection angle of Δ = 24 o.
Please compute L, T, M, E, C.
Solution:
L = 320 *( 24 /(180./pi))= 134.04 m
Dr. Mehmet M. Kunt
11
Example
For a horizontal curve with radius of 350 meters and deflection angle of
24 degrees please obtain the T, M, E, C and L values.
SOLUTION
>>> hcall(350,24,0)
Horizontal Curve Parameter Computations
INPUT
======
Radius
= 350 m
Deflection Angle = 24 degrees
COMPUTATIONS
============
Tangent, T
= 74.4 m Function: T = hct(Radius,delta)
Middle distance, M = 7.6 m Function: M = hcm(Radius,delta)
External distance, E = 7.8 m Function: E = hce(Radius,delta)
Chord, C
= 145.5 m Function: C = hcchord(Radius,delta)
Length of the curve,L = 146.6 m Function: L = hcl(Radius,delta)
Dr. Mehmet M. Kunt
12
Plot of a Horizontal Curve
Dr. Mehmet M. Kunt
13
L
Dr. Mehmet M. Kunt
14
T
Dr. Mehmet M. Kunt
15
M
Dr. Mehmet M. Kunt
16
E
Dr. Mehmet M. Kunt
17
Example
For a horizontal curve with radius of 350 meters and
deflection angle of 24 degrees please obtain the T, M, E, C
and L values.
SOLUTION
>>> hcall(350,24,1)
Radius = 350
Deflection angle = 24
Tangent = 74.4
Middle distance = 7.6
External distance = 7.8
Chord = 145.5
Length of the curve = 146.6
Dr. Mehmet M. Kunt
18
Example
For a horizontal curve with radius of 350 meters and
deflection angle of 24 degrees please obtain the T, M, E, C
and L values.
SOLUTION
>>> hcall(350,24,2)
Input: Radius, deflection angle
350 24
T,M,E,C,L
74.4 7.6 7.8 145.5 146.6
Dr. Mehmet M. Kunt
19
Deflection Angle
 x 
dx  

 2 R  RAD
cx  2R sin d x
Dr. Mehmet M. Kunt
20
Example
• Prepare a table giving chords and deflection angles
for staking out a 400-m radius circular curve with a
total deflection angle of 30o . The TC point is at
station 44+60. Give the deflection angles and chords
for 0.25L, 0.5L, 0.75L and L.
 x 
dx  

 2 R  RAD
L  Rc  rad
cx  2R sin d x
Dr. Mehmet M. Kunt
21
Example
Prepare a table giving chords and deflection angles for staking
out a 400-m radius circular curve with a total deflection angle
of 30o . The TC point is at station 44+60. Give the deflection
angles and chords for 0.25L, 0.5L, 0.75L and L.
 x 
dx  

 2 R  RAD
cx  2R sin d x
L  Rc  rad
SOLUTION
X values are equal to 0.25 L, 0.5L, 0.75L and L
L = 400*30/57.295 = 209.44 m
X = 0.25L =52.36 m
dx = (52.36/(2*400)) = 0.0654
cx = 2*400*sin(0.0654) = 52.32 m
Dr. Mehmet M. Kunt
22
Example
Prepare a table giving chords and deflection angles for staking
out a 400-m radius circular curve with a total deflection angle
of 30o . The TC point is at station 44+60. Give the deflection
angles and chords for 0.25L, 0.5L, 0.75L and L.
 x 
dx  

 2 R  RAD
cx  2R sin d x
L  Rc  rad
SOLUTION
And all of the calculations can be computed as
follows:
Length of the
Station X
44+60
0.0
45+12
52.36
45+64
104.72
46+16
157.08
46+68
209.44
curve =
dx
0.0000
0.0654
0.1309
0.1963
0.2618
Dr. Mehmet M. Kunt
209.44 m 2.09 sta
cx
0.000
52.323 (computed in previous
104.421
156.073
207.056
page)
23
Dr. Mehmet M. Kunt
24
Stopping Sight Distance on
Horizontal Curves
Dr. Mehmet M. Kunt
25
Dr. Mehmet M. Kunt
26
SUPERELEVATION
Dr. Mehmet M. Kunt
27
Superelevation
V2
Rc 
127 f  e 
Rc = Radius of the curve
V = Speed of the vehicle, km/h
f = coefficient of side friction
e = superelevation rate
Dr. Mehmet M. Kunt
28
Table 4.5 Values of side friction
recommended by AASHTO
Design Speed,
km/h
30
40
50
60
70
80
90
100
110
120
Maximum side
friction factor
0.17
0.17
0.16
0.15
0.14
0.14
0.13
0.12
0.11
0.09
Dr. Mehmet M. Kunt
29
Table 4.6 Recommended minimum radius of
curvature
Design
Speed, km/h
30
40
50
60
70
80
90
100
110
120
Minimum curve
radius, m
35
60
100
150
215
280
375
490
635
870
Dr. Mehmet M. Kunt
30
Dr. Mehmet M. Kunt
31
SPIRAL CURVES
Dr. Mehmet M. Kunt
32
Dr. Mehmet M. Kunt
33
Spiral of Theodorus
http://en.wikipedia.org/wiki/Spiral_of_Theodorus
Dr. Mehmet M. Kunt
34
Spiral curve parameters
Ls
s 
2 Rc
A  Ls Rc
L5s
X s  Ls 
40A 4
L3s
L7s
Ys 

2
6
6A
336 A
Dr. Mehmet M. Kunt
35
;
Spiral curve parameters
s 
Ls
2 Rc
A  Ls Rc
X s  Ls 
L5s
L3s
L7s
Y


40A 4 s 6 A 2 336 A 6
p  Ys  Rc 1 cos  s 

T '  Rc  p  tan 
2
k  X s  Rc sin  s
Lc  Rc rad  Ls
c
X 2 Y 2
Y 
d  tan  
X
1
Dr. Mehmet M. Kunt
36
Problem
• A roadway goes from tangent alignment to a
250-m circular curve by means of a
80-m-long spiral transition curve. The
deflection angle between the tangents is 45°.
Use formulas to compute Xs Ys p, and k.
Assume that the station of the P.L,
measured along the back tangent, is 250 + 00,
and compute the stations of the TS,
SC, CS, and ST.
Dr. Mehmet M. Kunt
37
Solution
Dr. Mehmet M. Kunt
38
Dr. Mehmet M. Kunt
39
Dr. Mehmet M. Kunt
40
Dr. Mehmet M. Kunt
41