Mutation Mutation types ACERCA DE MUTAÇÕES… • Alteração na sequência nucleotídica • Várias classsificações – – – – Tipo de célula: somática ou linha germinal Tipo de alteração molecular Efeito fenotípico (na função) Origem: • espontâneas • induzidas – Agentes químicos (mutagéneos) – Agentes físicos • Sistemas de reparação Mutation might also occur during DNA replication Wilde-type Mutant Two basic classes of mutations: somatic and germ-line mutation Nonreproductive cells Reproductive cells Mosaics Three basic molecular types of gene mutations are base substitutions, insertions and deletions Base substitution leads to two types of molecular change: transition and tranversion Base substitution during replication leads to two types of molecular change: - transition - tranversion Codons that can result from a single base change in tyrosine codon UAU Different types of mutations caused by base substitutions in coding regions Normal protein Ponctual mutations Unpredictble protein function Incomplete protein Normal protein Molecular basis of sickle-cell anemia. Consequences of base substitution example- missense mutation The resulting hemoglobin is defective and tends to polymerize at low oxygen concentration Insertion/deletion of a nucleotide Frameshift mutation Other classifications for phenotypic effects of mutations • Loss-of-function (null or knockout) (eliminates normal function) • Gain-of-function (ectopic expression) (expressed at incorrect time, or in appropriate cell types) • Hypomorphic (leaky) (reduces normal function, usually due to low level gene expression) • Hypermorphic (increases normal function, usually due to high level gene expression) Terminologia de mutação (frequentemente aplicada a microorganismos) • Auxotrofos- não cresce em meio mínimo porque a mutação afecta um gene que codifica uma molécula biológica essencial • Constituitivos- expressão (transcrição) permanente de um gene. Ex. região do operador do operão lac • Condicionais- ex. mutações termosensíveis (Ts)- só se manifestam sob determinadas condições (não permissivas) • Letais condicionais- mutações que só se manifestam sob determinadas condições, e quando tal são letais • Incondicionais- manifestam-se sob condições permissivas e não permissivas Relation of foward, reverse and supressor mutations An INTRAGENIC supressor mutation occurs in the same gene that contains the mutation being supressed Model for the effect of mutation and intragenic supression on the folding and activity An INTERGENIC supressor mutation occurs in a different gene from the one bearing the original mutation Mutation in a different gene Leu tRNA gene Mutant Leu tRNA gene X Mutant Leu tRNA Efeitos das mutações • Mutações silenciosas – No DNA intergénico – Em regiões não codificantes – Numa base do tripleto, sem alterar o aa • Mutações em regiões codificantes – – – – – • Silenciosas Missense Nonsense Read-through Frameshift Mutações em regiões não codificantes, mas não silenciosas – – – – Região do promotor Sequências reguladoras Origem replicação Limiar exão/intrão ou mesmo no intrão • Novos locis de splicing alternativo Spontaneous mutation (in absence of known mutagen) vs Induced mutation (in presence of known mutagen) Spontaneous chemical changes • Tautomerization • Depurination • Deamination (may also be induced by mutagenic chemicals) (tautomeric forms) keto enol C=O C-OH keto enol amino imino -NH2 =NH amino imino Pairing relationships of DNA bases in the normal and tautomeric forms (imino) (enol) Tautomeric shifts results in transition mutations. The tautomerization can occur in the: - template base, ie, tautomerization of the base in the template - substrate base, ie, tautomerization of incoming base. Depurination Desaminação Perda do grupo amina NH2 Espontânea ou induzida Deamination: spontaneous loss of amino group Methylated cytosine Methylation of cytosine at the number-5 position in the base. The methyl donor is S-adenosylmethyonine Mechanism by which uracil-containing nucleotides are formed in DNA and removed (E. coli) Uracil is cleaved from the deoxyribose sugar by DNA uracil glycosylase The deoxyribose with the uracil detached is then excised from the DNA backbone by another enzyme (AP endonuclease) and the gap is repaired Deamination of 5-methylcytosine leads to a mutation 5MeC –G T–G Replication T – A (mutant) G – C (wt) Chemical induced mutations • Chemical environmental agents that significantly increase the rate of mutation above the spontaneous rate Ex. • Base analogs (ex. 5-Bu, 2-AP) • Chemicals that alter bases – Nitrous acid- deamination – Alkylating agents (EMS, NTG, nitrogen mustards, mitomycin C) – Hydroxylamine • Intercalating agents (EtBr, proflavin …) • Reactive forms of oxygen (ex superoxide radicals)- oxidative reactions Base analogues (ex) Principal mechanism of mutagenesis of base analogs: increased rate on base mispairing Mispairing mutagenesis by 5-bromouracil Normal pairing Mispairing Nucleotide analogue AZT is used in the clinical treatment of AIDS Chemicals may alter DNA bases Highly mutagenic alkylating agents The effect of alkylation depends on the position at which the nucleotide is modified and the type of of alkyl group that is added. Alkylation may alter base-pairing properties and so lead to point mutations, or cause structure distortion forming crosslinks between the two strands, blocking replication. Principal mechanism of mutagenesis: bulky attachments made to side groups on bases Adenine deamination due to nitrous acid treatment Altered A pairs with C Transition A-T G-C Pu-Py Pu-Py INTERCALATING AGENTS Insert between adjacent bases in DNA, distorting the three-dimensional structure of the helix and causing single-nucleotide insertions and deletions in replication Physical agents UV Ionizing radiation Heat In the electromagnetic spectrum, as wavelenght decreases, energy increases Ionizing radiation sunlight /TV Pyrimidime dimers result from ultraviolet light Different types of bonds between the thymine rings are also possible Distortion of the DNA helix DNA replication and transcription are blocked Ionizing radiation • Source: x-rays, radon gas, radioactive materials • Mechanism of mutagenesis: – single and double-stranded breaks in DNA – damage to nucleotides Técnicas de Mutagénese Aleatória (random) Dirigida deamination Chemical mutagenesis using sodium bisulfite Transição: C-G T-A Oligonucleotide-directed mutagenesis by enzymatic primer extension Plasmid DNA is isolated from the resulting colonies and is screened to identify mutants Enrichment for oligonucleotide-directed mutants by using a uracil-containing template Single-stranded DNA is prepared in a ung- dutE. coli strain ung– - DNA uracil glycosylase deficient dut– - dUTPAse deficient (high levels of dUTP) Following ligation, the heteroduplex DNA molecules are introduced in a ung+ E. coli strain Quick-Change site directed mutagenesis DNA isolated from most E. coli strains is dam methylated DpnI- is specific for methylated and hemimethylated DNA Mutation Repair Sistemas de reparação • Directos (não substituem o nt alterado, mas repõem a sua estrutura original) – Fotoreparação enzimática. Ex. fotoliase de E. coli – Remoção enzimática de grupos químicos que se ligam às bases dos nts e os alteram. Ex enzima ADA de E. coli que remove os grupos alquilo na posição 6 da guanina – DNA ligase que actua sobre cortes em cadeia simples (nicks) – DNA polimerase I e DNA ligase (E. coli) que actuam em lacunas (gaps) – Recombinção homóloga em gaps ou cortes em cadeia dupla Sistemas de reparação (cont.) • Excisão – Excisão de bases e nts • Glicosilases (enzimas específicas de re+aração do DNA). Ex. uracil glicosilase (ung). Geram locais apurínicos (Depurinação) • Endonucleases AP- removem o açúcar-fosfato nos locais apurínicos (AP) • Excisão de nucleótiodos pelo sistema MutHLS (geralmente associado a um incorrecto emparelhamento de bases- mismatch) • Excisão de nucleótidos devido a bases modificadas que distorcem a configuração normal do DNA. Ex. dímeros de timina, bases alteradas do cido a ligação de grupos químicos)- Sistema UvrABC • Sistema SOS (E. coli) • DNA clivado em ambas as cadeias (proteínas Ku70 e Ku80 + cinase de DNA + …) Direct repair: enzymatic removal changes nucleotides back into their original stuctures - ADA in E.coli - MGMT (O6-methylguanine-DNA methyltransferase) in humans Base and nucleotide excision repair Excises modified bases and then replaces the entire nucleotide Each DNA glycosylase enzyme recognizes and removes a specific type of damaged base, producing an apurinic or an apyrimidinic site (AP site) The endonuclease AP cleaves the phosphodiester bond on the 5’ side of the AP site and removes the deoxyribose sugar Gap Nick Just after DNA replication… The mismatch is brought close to a methylated GATC sequence, and the new strand is identified Helicase and single-stranded exonuclease remove nucleotides on yhe new strand between the GATC sequence and the mismatch DNA polymerase I, DNA ligase Dam methylase Many incorrectly inserted nucleotides that escape proofreading are corrected by MutHLS - mismatch repair Excision repair of DNA by E. coli UvrABC mechanism UvrA/UvrB complex detect conformational changes in DNA Helix to become locally denatured and kinked by 130° UvrC endonuclease binds and cuts the damaged strand at two sites separated by 12 or 13 bases Helicase II unwinds the damaged region, releasing the single-stranded fragment with the lesion, which is degraded to mononucleotides The gap is filled by DNA polymerase I, and the remaining nick is sealed by DNA ligase
© Copyright 2026 Paperzz