Chapter 3 Derivatives of Elementary Functions 3.1 DERIVATIVES OF ALGEBRAIC, LOGARITHMIC, AND EXPONENTIAL FUNCTIONS 3.1.1 Let u(x) be a differentiable function with respect to x, and α, a and k be constants. 1. d α [x ] = αxα−1 dx 2. du d α [u ] = αuα−1 dx dx 3. 1 d 1/2 [x ] = 1/2 dx 2x 4. d 1/2 1 du [u ] = 1/2 dx 2u dx 5. d −α α [x ] = − α+1 dx x 6. d −α α du [u ] = − α+1 dx u dx 7. d 1 [ln x] = dx x 8. d 1 du [ln u] = dx u dx 9. (n − 1)! (−1) dn [ln x] = dxn xn 10. d2 1 [ln u] = − 2 dx2 u 11. d [x ln x] = ln x + 1 dx 12. d x du [x ln u] = ln u + dx u dx 13. d n [x ln x] = (n ln x + 1)xn−1 dx 14. d du [u ln u] = (ln u + 1) dx dx n−1 149 du dx 2 + 1 d2 u u dx2 150 Chapter 3 15. d x [e ] = ex dx 16. d kx [e ] = kekx dx 17. du d u [e ] = eu dx dx 18. d x [a ] = ax ln a dx 19. d u du [a ] = au (ln a) dx dx 20. d x [x ] = (1 + ln x)xx dx Derivatives of Elementary Functions 3.2 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 3.2.1 Let u(x) be a differentiable function with respect to x. 1. d [sin x] = cos x dx 2. d du [sin u] = cos u dx dx 3. d [cos x] = −sin x dx 4. d du [cos u] = −sin u dx dx 5. d [tan x] = sec2 x dx 6. d du [tan u] = sec2 u dx dx 7. d [csc x] = −csc x cot x dx 8. d du [csc u] = −csc u cot u dx dx 9. d [sec x] = sec x tan x dx 11. 13. d [cot x] = −csc2 x dx 1 dn [sin x] = sin x + nπ dxn 2 10. 12. 14. d du [sec u] = sec u tan u dx dx d du [cot u] = −csc2 u dx dx 1 dn [cos x] = cos x + nπ dxn 2 3.3 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS 3.3.1 Let u(x) be a differentiable function with respect to x. 1. 2. 3. 4. π d x 1 x π arcsin = − < arcsin < 1/2 dx a 2 a 2 (a2 − x2 ) d u 1 π du u π arcsin = − < arcsin < 1/2 dx a 2 a 2 (a2 − u2 ) dx x −1 x d arccos = 0 < arccos < π 1/2 2 2 dx a a (a − x ) u −1 u du d arccos = 0 < arccos < π 1/2 dx a a (a2 − u2 ) dx 3.4 Derivatives of Hyperbolic Functions 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 151 x a d arctan = 2 dx a a + x2 du u a d arctan = 2 2 dx a a + u dx x d x −a π 0 < arccsc arccsc = < 1/2 dx a a 2 x (x2 − a2 ) d x a π x arccsc = − < arccsc < 0 1/2 dx a 2 a x (x2 − a2 ) d u −a u du π arccsc = 0 < arccsc < 1/2 dx a a 2 u (u2 − a2 ) dx u a π d du u arccsc = − < arccsc < 0 1/2 dx a 2 a u (u2 − a2 ) dx x a x π d arcsec = 0 < arcsec < 1/2 dx a a 2 x (x2 − a2 ) x −a π d x arcsec = < arcsec < π 1/2 dx a 2 a x (x2 − a2 ) u a u du π d arcsec = 0 < arcsec < 1/2 dx a a 2 u (u2 − a2 ) dx u −a π d du u arcsec = < arcsec < π 1/2 dx a 2 a u (u2 − a2 ) dx 3.4 DERIVATIVES OF HYPERBOLIC FUNCTIONS 3.4.1 Let u(x) be a differentiable function with respect to x. 1. d [sinh x] = cosh x dx 2. d du [sinh u] = cosh u dx dx 3. d [cosh x] = sinh x dx 4. d du [cosh u] = sinh u dx dx 5. d [tanh x] = sech2 x dx 6. d du [tanh u] = sech2 u dx dx 7. d [csch x] = − csch x coth x dx 8. d du [csch u] = − csch u coth u dx dx 9. d [sech x] = − sech x tanh x dx 10. d du [sech u] = − sech u tanh u dx dx d [coth x] = − csch2 x + 2δ(x) dx 12. d du [coth u] = −[csch2 u + 2δ(u)] dx dx 11. The delta function occurs because of the discontinuity in the coth function at the origin. 152 Chapter 3 Derivatives of Elementary Functions 3.5 DERIVATIVES OF INVERSE HYPERBOLIC FUNCTIONS 3.5.1 Let u(x) be a differentiable function with respect to x 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. x 1 d arcsinh = 1/2 2 dx a (x + a2 ) d u 1 du arcsinh = 1/2 dx 2 2 dx a (u + a ) x d x 1 x arccosh = > 1, arccosh > 0 1/2 dx a a a (x2 − a2 ) d x −1 x x arccosh = > 1, arccosh < 0 1/2 dx a a a (x2 − a2 ) u 1 u du u d arccosh = > 1, arccosh > 0 1/2 dx a a a (u2 − a2 ) dx u −1 du u u d arccosh = > 1, arccosh < 0 1/2 dx a a a (u2 − a2 ) dx 2 x a d x < a2 arctanh = 2 dx a a − x2 du 2 u a d arctanh = 2 u < a2 2 dx a a − u dx x −a d arccsch = [x = 0] 1/2 dx a |x| (x2 + a2 ) du d u −a arccsch = [u = 0] 1/2 dx a |u| (u2 + a2 ) dx d x −a x x arcsech = 0 < < 1, arcsech > 0 1/2 dx a a a x (a2 − x2 ) d x a x x arcsech = 0 < < 1, arcsech < 0 1/2 dx a a a x (a2 − x2 ) u −a u du u d arcsech = 0 < < 1, arcsech > 0 1/2 dx a a a u (a2 − u2 ) dx u a u du u d arcsech = 0 < < 1, arcsech < 0 1/2 dx a a a u (a2 − u2 ) dx 2 d x a x > a2 arccoth = 2 2 dx a a −x d du 2 u a arccoth = 2 u > a2 2 dx a a − u dx
© Copyright 2026 Paperzz