Molecular Shape Drawing Good Lewis Structures 1. # valence Always. e– in atoms (± charge) must = # e– Ronald J. Gillespie English in structure. 1957 2. Determine connectivity: least EN usually central, avoid small rings, H always terminal (1 e–). 3. Complete octet for each atom (except H); check against #1. Valence-Shell Electron-Pair Repulsion VSEPR regions of e– ρ around central atom repelled as far as possible •• 4. Remove required e– in pairs from central atom. 5. Move e– pairs from outside atoms to bond with central atom to complete octet again. x 6. Minimize formal charge (# and distribution of + and –). = 3 linear x x trigonal bipyramidal octahedral x trigonal planar tetrahedral H2 Molecule 109.5o 120o 109.5o bent trigonal planar 0 trigonal pyramidal tetrahedral Energy (eV) 120o bent = 4 180o linear = x VSEPR and Deviations 2 Ronald S. Nyholm Australian 6 5 180o 90o 90o 90o 90o 90o 120o linear T-Shaped see-saw trigonal bipyramidal square planar square pyamidal octahedral 1 –2 2 3 r (Å) bonding-bonding < Lp-bonding < Lp-Lp Overlap Symmetry cross section 1.0 0.5 deviate from ideal when lone-pair involved experiment i t –4 Valence Bond Treatment: CH4 ½(s + px + py + pz) cross section ½(s + px – py – pz) ½(s – px + py – pz) 4 sp3 orbitals H ½(s – px – py + pz) C s S σ > Sπ > Sδ p H 2p E 2s d H H sp3 weighted average E 1 sp2 Hybrid Orbitals 1 √3 1 √3 1 √2 s + px √3 √3 1 1 px + s – py √6 √2 1 1 px – s – py √6 √2 sp Hybrid Orbitals 1 (s + pz) √2 1 (s – pz) √2 sp2 2p 2s s s s s s s dsp3 + – + + – – px px pz py px py + – – – – – sp 2s Other Hybrid Orbitals dz2 dz2 dz2 dz2 dz2 dz2 2p 2p E sp2 equatorial s + px s – px + py s – px – py axial pz + dz2 pz – dz2 linear trigonal planar 2p E sp Hybrid Orbitals and Bond Strength bond strength S – – + – d x 2 – y2 d x 2 – y2 d x 2 – y2 d x 2 – y2 d2sp3 s character S sp > sp2 > sp3 SC-C 0.8 SC-H 0.7 S 0.6 0.5 0.4 sp3 sp2 sp 50% s trigonal bipyramidal 0.9 33% s 25% s 0.3 0 20 40 60 80 100 % s character octahedral Multiple Bonds Non-VSEPR Molecule Multiple bonds from π (and δ) overlap. N(SiH3)3 •• •• O ClO3– – •• •• O Cl O •• •• •• Cl has low E d orbitals O sp2 sp2 O D3h not C3v Cl O sp2 Si Si Si N Si Si Si sp2 N low E d on Si more bonds, lower E sp3 2 MO Treatment H2 MO Treatment H2 no e– density between nuclei – antibonding (u) Bond Order = (# of bonding e– – # of antibonding e–)/2 1s 1s 1s Energ gy Energ gy E 1s 1s 1s E 1s E = E H2 lower energy than 2 H by 2 x E. 1s Bond Order = (2 – 0)/2 = 1 e– density between nuclei – bonding (g) MO Treatment He2 Bond Order = (# of bonding e– Molecular Orbitals – # of antibonding S depends on E and symmetry: SAB > 0, bonding: E stabilized SAB < 0, antibonding: E destabilized Sσ > Sπ > Sδ SAB = 0, nonbonding: no stabilization e–)/2 Energ gy 1s 1s 1s – – π*2p g + + π2p – *2p u + 2p Bond Order = (2 – 2)/2 = 0 – *1s u No energy advantage: He2 does not exist. + 1s 1s s-p Energy Separation in First Row Elements B C 2p Energy Complicated by s-p mixing when s and p close in E. Changes relative MO E’s. N 2p Energy C N O O 2p 2s 2p *2p 2p 2s 2s 8.8 12.4 16.5 2px 2py 2pz Complicated by s-p mixing when s and p are closer in E (early elements). 2s 5.7 g *2p F F E (eV) g Homonuclear Diatomic MO Diagram 2s *2p 2p *2s 2s B u 21.6 2p 2pz 2py 2px 2p *2s 2s 2s 2s 3 Homonuclear Diatomic MO Diagram 2px 2py 2pz No longer named after AO. Numbered and symmetry (u or g) given. MO Diagram: Li2, Be2, B2, C2, N2 6u 6u 2g 2g 5g 2pz 2py 2px 2px 2py 1u 2s 2s Li MO Diagram: Li2, Be2, B2, C2, N2 2pz B 2 Be 6u 2g 2g 2pz 2py 2px 2px 2py 2pz B2 Be 2s Be B MO Diagram: Li2, Be2, B2, C2, N2 2px 2py 2pz C2 2g 2g 2pz 2py 2px 2px 2py 2pz N2 C B 5g 2pz 2py 2px 4u 2s 3g 2px 1u bond order 4u 2s 2py MO Diagram: Li2, Be2, B2, C2, N2 6u 5g 2pz 2s 3g 6u 1u bond order 5g 4u 2s 3g Li 1u bond order 4u 2s 2px MO Diagram: Li2, Be2, B2, C2, N2 1u bond order 2py 2s 3g 6u 5g 2pz 4u 3g 2py 5g 1u bond order 4u 2s 2px 2pz Li2 C 2s N 2s 3g N 4 MO Diagram: O2, F2, Ne2 2px 2py 2pz *2p *2p *2p *2p 2p O2 MO Diagram: O2, F2, Ne2 2pz 2py 2px 2px 2pz 2pz *2s 2s 2s 2s 2s O 2s O F 2s F Bond Length 1/Bond Order MO Diagram: O2, F2, Ne2 2py *2p *2p *2p *2p 2pz 2pz N 2 Ne bond order 2py 2p 2p 2p *2s *2s 2s O 2s Ne Cr2: Bonds 2s order length, pm O2+ O2 O2– O22– O Carbon Monoxide MO Diagram *s *z2 Cr2 bond order Superoxide dismutase (SOD) 2px 2p 2s Ne 2p *xz, yz *x2–y2, xy 2p x2–yy2 xyy yyz 3d xz z2 4s Cr z2 x2–y2, xy xz, yz z2 2px 2p bond order *2s 2px 2py 2p F2 2p bond order 2py xz yyz 3d xyy x2–yy2 nb 2s 4s Cr xz, yz z2 s x2–y2, xy C nb 2s O 5 H2 O CH4 SALC O H H b1* A1 = H1 1s + H2 1s + H3 1s + H4 1s O H a1* H T = H1 1s – H2 1s + H3 1s – H4 1s T = H1 1s – H2 1s – H3 1s + H4 1s B1 A1 2pp A1 B1 B2 H H H O b1 H H O 1a1 A1 H O 2a1 2s T = H1 1s + H2 1s – H3 1s – H4 1s O b2 H O H A1 bonding orbitals 2H Diborane, B2H6: 3-Center, 2 e– Bond B H Electronegativity: Periodic Property H B SALC: A1g = sp3 + sp3 H H H D2h B2u = sp3 – sp3 B 4.5 H: A1g = 1s H F 4.0 Electronegativity y 3.5 nb B2u A1g A1g B, B Cl 30 3.0 At 1.5 Li Na K 1.0 Total Energy y (MJ/mole) Rb 0 20 10 Tottal Energy 6 2 3 N Na 4 where q = ionic charge Cl larger than Na 8 2 E = IE or EA 20 Cl 12 E = q + q2 45 100 14 Cl 70 80 Mulliken-Jaffe Electronegativity 95 1 Fr 40 60 Atomic Number Ne F O Oxidation State Cs 0.0 120 0 I 2.0 Total Energy –5 Br 2.5 0.5 H –1 T (~98% O) 0 –1 1 –2 –4 Charge 6 Electronegativity Equalization 14 Cl E = 11.0q + 5.7q2 12 Tottal Energy 10 Na0.51+Cl0.51– 8 6 N E = 2.8q Na 2 8 + 2.3q 23 2 4 a A aB = δ bA + bB 2 0 –1 –2 1 11.0 2.8 = 0.51 2(5.7) + 2(2.3) –4 Charge 7
© Copyright 2026 Paperzz