MET 487 Lecture 9 Monday, July 19, 2010 5:30 PM Chapter 6. Digital Circuits 6.1 Introduction 6.2 Digital Representations Number Systems • Decimal Number System • Binary Number System • Octal Number System • Hexadecimal Number System Binary Number System • Bit - Binary digit • Least Significant Bit (LSB) • Most Significant Bit (MSB) Example: Decimal to Binary Conversion 123 => 1111011 Method 1: Table 6.1 Successive Divisions Quotient Remainder 123/2 61 1 61/2 30 1 30/2 15 0 15/2 7 1 7/2 3 1 3/2 1 1 1/2 0 1 Result LSB MSB 1111011 Method 2: Binary Weight (2 ^ 8 = 256; 2 ^ 9 = 512; 2^10 = 1,024 or 1K) ------------------------------------------------2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 -----------------------------------------------128 64 32 16 8 4 2 1 ------------------------------------------------0 1 1 1 1 0 1 1 128 > 123 => place 0 in bit 7 position 64 < 123 => (123 - 64 = 59); place 1 in bit 6 position 32 > 59 => (59 - 32 = 27); place 1 in bit 5 position 16 < 27 => (27 - 16 = 11); place 1 in bit 4 position 8 < 11 => (11 - 8 = 3); place 1 in bit 3 position 4 > 3 => place 0 in bit 2 position 2 < 3 => (3 - 2 = 1); place 1 in bit 1 position 1 = 1 ; place 1 in bit 0 position Example 6.1: Binary Arithmetic MET-487-Lectures Page 1 Example 6.1: Binary Arithmetic 0 + 0 -----0 (Sum) 1 +0 ----1 (Sum) 1 +1 -------1 (Carry bit to the next higher bit position) 0 (Sum) 9 + 3 = 12 = (1100) - base 2 CY 0 1 1 10 0 1 +0 0 1 1 ---------11 0 0 (sum bits) 9 x 3 = 27 = (11011) - base 2 1001 x 0011 ------------------ Table 6.2 Hexadecimal Symbols and Equivalents Binary Hexadecimal Decimal Octal 0000 0 0 0 0001 1 1 1 0010 2 2 2 0011 3 3 3 0100 4 4 4 0101 5 5 5 0110 6 6 6 0111 7 7 7 1000 8 8 10 MET-487-Lectures Page 2 1000 8 8 10 1001 9 9 11 1010 A (a) 10 12 1011 B (b) 11 13 1100 C (c ) 12 14 1101 D 13 15 1110 E 14 16 1111 F 15 17 Examples: 123 (base 10) = 0111 1011 (base 2) = 7B (base 16) 123 (base 8) = 001 111 011 (base 2) = 173 (base 8) ASCII Codes: 8-bit A (0100 0001) = 41 Hex = 65 (base 10) B = (0100 0010) = 42 Hex, 66 (base 10) .. Z= 90 (base 10) UNICODE (16-bit): xxxx xxxx ASCII 65536 = 2^8 * 2^8 = 65,536 256 * 256 Binary Coded Decimal (BCD) - use 4 bit-code number to encode each decimal digit 123 (base 10) = 0001 0010 0011 (BCD) 123 (Base 10) = 0111 1011 (base 2) 6.3 Combinational Logic and Logic Classes NOT C = A' AND C= A ∙ B OR C= A +B NAND C = (A ∙B)' NOR C = (A + B)' XOR C = A O B = A ∙ B' + A' ∙ B Buffer C= A MET-487-Lectures Page 3 Example 6.2: A Logic Circuits with Three Inputs: A, B, C Three Outputs: D, E, F Boolean Equations: D= A B E = D + C' = (A ∙ B) + C' F = (E ∙ C')' Gates: AND Gate x 1 (7408 x 1) OR Gate x 1 (7432 x 1) NOT Gate (7404 x 1) NAND Gate (7400 x 1) NOR gate (7402 x 1) Truth Table Inputs Outputs A B C D E F 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 7404 Inverter Pasted from <http://www.cs.uiowa.edu/~jones/logicsim/man/node5.html> MET-487-Lectures Page 4 7400 NAD Pasted from <http://www.cs.uiowa.edu/~jones/logicsim/man/node5.html> 6.4 Timing Diagrams 6.5 Boolean Algebra Example 6.3 Simplifying a Boolean Expression 6.6 Design of Logic Networks 6.7 Finding a Boolean Expression Given a Truth Table Example 6.4 Sum of Products and Products of Sums LAB 6: • Build the logic circuit - Example 6.2 • Verify the logic circuits using the Truth Table 6.8 Sequential Logic 6.9 Flip-Flops 6.10 Applications of Flip-Flops 6.11 TTL and CMOS Integrated Circuits 6.12 Special Purpose Digital Integrated Circuits 6.13 Integrated Circuit System Design MET-487-Lectures Page 5
© Copyright 2026 Paperzz