Cálculo del coeficiente de transmisión térmica (Uf) Puerta de Rebatir M-Tres (Zócalo), con poliamida de 25 - Mediterránea RPT Cliente: Cálculos realizados por Fecha: Alcemar Technoform BAUTEC Ibérica, s.l. Laia Cardona Tel: +34 93 238 64 38/ Fax: +34 93 415 40 37 Email: [email protected] 20.04.2006 Resultados Zocalo RPT M-3/25 mediante BISCO según norma EN ISO 10077-2:2003 Uf = 3,00 W/m2K Zocalo RPT M-3/25 mediante RADCON con “Know-How” TECHNOFORM Uf = 2,83 W/m2K En este informe se detemina el coeficiente de transmisión térmica (Uf) mediante dos métodos de cálculo diferentes: A) Aplicando la norma EN ISO 10077-2:2003, y usando el software “BISCO” de la empresa Physibel. B) Aplicando un método própio, “know-how” de Technoform, dónde se usa el software “RADCON”- también propiedad de Physibel - y el valor final equivale aproximadamente al resultado en el test de cálculo de nuestra HOT-BOX (La diferencia es de un 5%) según norma ISO/FDIS 12567:2000. Contenido 1 • Dibujo sistema A) mediante BISCO según norma EN ISO 10077-2:2003 • • • • • Input – data BISCO Output – data BISCO Cálculo del coeficiente de transmisión térmica (Uf) Isotermas Flujo de calor B) mediante RADCON con “Know-How” TECHNOFORM • • • Input – data RADCON Output – data RADCON Cálculo del coeficiente de transmisión térmica (Uf) Dibujo sistema 2 A) mediante BISCO según norma EN ISO 10077-2:2003 Input – data BISCO Col. Name Type 8 28 44 60 119 135 151 170 174 182 214 215 216 217 218 219 220 250 252 253 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SIMPL BC_SIMPL BC_SIMPL EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL Col. 8 28 44 60 119 135 151 170 174 182 214 215 216 217 218 219 220 250 252 253 aluminium insulation polyamid reinf. EPDM temp. sensor 1 temp. sensor 2 temp. sensor 3 exterior interior (norma interior (reduc cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity <4x4 mm2 cavity <2x2 mm2 cavity <1x1 mm2 q [W/m²] ta hc [°C] [W/m²K] CEN-rule HE HI_NORML HI_REDUC CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I qc [W/m] Coupled lambda [W/mK] 160.000 0.035 0.300 0.250 160.000 160.000 160.000 eps [-] t h [°C] [W/m²K] 0.0 20.0 20.0 NO NO NO NO NO NO NO tr [°C] 25.00 7.70 5.00 0.218 0.044 0.123 0.091 0.090 0.043 0.142 0.037 0.031 0.028 C1 [-] C2 [-] C3 [-] 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0 0 0 Calculation parameters Contour approximation margin (triangulation) = 0 pixels 3 Iteration cycles = 5 Recalculation of CEN values (before each iteration cycle) Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001°C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % Output – data BISCO Col. Name Type 8 28 44 60 119 135 151 170 174 182 214 215 216 217 218 219 220 250 252 253 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SIMPL BC_SIMPL BC_SIMPL EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL aluminium insulation polyamid reinf. EPDM temp. sensor 1 temp. sensor 2 temp. sensor 3 exterior interior (norma interior (reduc cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity <4x4 mm2 cavity <2x2 mm2 cavity <1x1 mm2 tmin [°C] 2.16 0.79 2.30 1.44 12.87 12.98 15.84 0.79 12.84 13.07 2.35 2.28 2.32 12.71 12.77 2.24 2.18 2.37 2.17 1.71 tmax [°C] 13.08 17.33 12.82 13.82 12.87 12.98 15.84 2.37 17.33 16.61 12.87 2.39 12.81 12.92 12.98 2.35 13.68 13.00 2.23 13.22 ta [°C] flow in [W/m] flow out [W/m] 0.00 10.54 0.87 11.42 0.00 0.00 Cálculo del coeficiente de transmisión térmica (Uf) 4 THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: Uf = L2 D − U p * l p lf and with: L2D = q l , tot ∆θ Uf : thermal transmittance of the window frame [W/m2K] Up : lp : lf : L2D : ql,tot : ∆θ : Calculation thermal transmittance of the flanking panel [W/m2K] projected width of the flanking panel [m] projected width of the window frame [m] two-dimensional coupling coefficient [W/mK] total heat flow through the window frame and the flanking panel [W/m] temperature difference between inside (θi) and outside (θe) [K] Item: input data: ql,tot = 11,410 W/m θe = 0,0 o C Rse = 0,04 m2K/W Rsi = 0,13 m2K/W L2D = 0,57 W/mK θi = 20,0 oC di = 0,0280 m λi = 0,035 W/m*K Up = lp = 1,031 W/m2K 0,190 m calculation results: lf = 0,1249 m Uf = input data using the Physibel Software BISCO ql,tot : alphanumeric output BISKO heat losses per boundary condition input data, surface boundary conditions: ∆θ : inside temperature minus outside temperature Up : calculation, using the following formula: U p 1 di 1 = +∑ + λ i h i he 3,00 W/m2K −1 ext./int. surface heat transfer coeff. [W/m2K] he / hi di thickness of layer i [m] thermal conductivity of layer i [W/mK] λi lp / lf : input data: dimensions of the item PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 with: 5 Isotermas 6 Flujo de calor 7 B) mediante RADCON con “Know-How” TECHNOFORM Input – data RADCON Col. Name Type 8 28 44 60 119 135 151 156 170 174 182 190 214 215 216 217 218 219 220 250 252 253 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SKY BC_SKY BC_SKY BC_SKY EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL Col. 8 28 44 60 119 135 151 156 170 174 182 190 214 215 216 217 218 219 220 250 252 253 aluminium insulation polyamid reinf. EPDM temp. sensor 1 temp. sensor 2 temp. sensor 3 insulation far exterior interior 1 interior 2 interior 3 cavity cavity cavity cavity cavity cavity cavity cavity <4x4 mm2 cavity <2x2 mm2 cavity <1x1 mm2 q [W/m²] 0 0 0 0 ta hc [°C] [W/m²K] 0.0 20.0 20.0 20.0 12.00 2.33 2.50 2.88 CEN-rule Coupled NIHIL NIHIL NIHIL NIHIL CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I NO NO NO NO NO NO NO qc [W/m] tr [°C] lambda [W/mK] 160.000 0.035 0.300 0.250 160.000 160.000 160.000 0.035 eps [-] 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.202 0.043 0.115 0.092 0.091 0.043 0.130 0.037 0.031 0.028 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 t h [°C] [W/m²K] C1 [-] C2 [-] C3 [-] 0.0248 0.0243 0.0248 0.0252 0.0252 0.0243 0.0248 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.333333 0.25 0.333333 0.25 0.25 0.25 0.333333 0.0 20.0 20.0 20.0 8 Calculation parameters Contour approximation margin (triangulation) = 0 pixels Iteration cycles = 5 Nonlinear radiation Recalculation of CEN values (before each iteration cycle) Smallest accepted viewfactor = 0.001 Number of visibility rays between radiative surfaces = 100 Black radiation heat transfer coeff. (linear radiation) = 5.25 W/m²K Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001°C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % Output – data RADCON Col. Name Type 8 28 44 60 119 135 151 156 170 174 182 190 214 215 216 217 218 219 220 250 252 253 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SKY BC_SKY BC_SKY BC_SKY EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL aluminium insulation polyamid reinf. EPDM temp. sensor 1 temp. sensor 2 temp. sensor 3 insulation far exterior interior 1 interior 2 interior 3 cavity cavity cavity cavity cavity cavity cavity cavity <4x4 mm2 cavity <2x2 mm2 cavity <1x1 mm2 tmin [°C] 3.26 1.24 3.36 2.49 13.42 13.50 16.11 1.22 1.22 16.65 13.55 13.41 3.37 3.32 3.38 13.31 13.34 3.30 3.28 3.37 3.26 2.74 tmax [°C] 13.55 16.68 13.37 13.94 13.42 13.50 16.11 17.30 3.37 17.30 16.65 13.55 13.42 3.42 13.36 13.48 13.51 3.39 13.85 13.50 3.35 13.66 ta [°C] flow in [W/m] flow out [W/m] 0.00 3.51 0.98 6.43 10.92 0.00 0.00 0.00 9 Cálculo del coeficiente de transmisión térmica (Uf) THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: Uf = L2 D − U p * l p lf and with: L2D = q l , tot ∆θ Uf : thermal transmittance of the window frame [W/m2K] Up : lp : lf : L2D : ql,tot : ∆θ : Calculation input data: ql,tot = θe = thermal transmittance of the flanking panel [W/m2K] projected width of the flanking panel [m] projected width of the window frame [m] two-dimensional coupling coefficient [W/mK] total heat flow through the window frame and the flanking panel [W/m] temperature difference between inside (θi) and outside (θe) [K] Item: 10,92 W/m 0,0 o C Rse = 0,06 m2K/W Rsi = 0,13 m2K/W L2D = 0,55 W/mK θi = 20,0 oC di = 0,0280 m λi = 0,035 W/m*K Up = lp = 1,010 W/m2K 0,190 m calculation results: lf = 0,1249 m Uf = input data using the Physibel Software BISCO ql,tot : alphanumeric output BISKO heat losses per boundary condition input data, surface boundary conditions: ∆θ : inside temperature minus outside temperature Up : calculation, using the following formula: U p 1 di 1 = +∑ + λ i h i he 2,83 W/m2K −1 ext./int. surface heat transfer coeff. [W/m2K] he / hi di thickness of layer i [m] thermal conductivity of layer i [W/mK] λi lp / lf : input data: dimensions of the item PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 with: 10
© Copyright 2026 Paperzz