Puerta de Rebatir M-Tres (Zócalo), con poliamida de 25

Cálculo del coeficiente de transmisión térmica (Uf)
Puerta de Rebatir M-Tres (Zócalo), con
poliamida de 25 - Mediterránea RPT
Cliente:
Cálculos realizados por
Fecha:
Alcemar
Technoform BAUTEC Ibérica, s.l.
Laia Cardona
Tel: +34 93 238 64 38/ Fax: +34 93 415 40 37
Email: [email protected]
20.04.2006
Resultados
Zocalo RPT M-3/25 mediante BISCO
según norma EN ISO 10077-2:2003
Uf = 3,00 W/m2K
Zocalo RPT M-3/25 mediante RADCON
con “Know-How” TECHNOFORM
Uf = 2,83 W/m2K
En este informe se detemina el coeficiente de transmisión térmica (Uf) mediante dos
métodos de cálculo diferentes:
A) Aplicando la norma EN ISO 10077-2:2003, y usando el software “BISCO” de la
empresa Physibel.
B) Aplicando un método própio, “know-how” de Technoform, dónde se usa el
software “RADCON”- también propiedad de Physibel - y el valor final equivale
aproximadamente al resultado en el test de cálculo de nuestra HOT-BOX (La
diferencia es de un 5%) según norma ISO/FDIS 12567:2000.
Contenido
1
•
Dibujo sistema
A) mediante BISCO según norma EN ISO 10077-2:2003
•
•
•
•
•
Input – data BISCO
Output – data BISCO
Cálculo del coeficiente de transmisión térmica (Uf)
Isotermas
Flujo de calor
B) mediante RADCON con “Know-How” TECHNOFORM
•
•
•
Input – data RADCON
Output – data RADCON
Cálculo del coeficiente de transmisión térmica (Uf)
Dibujo sistema
2
A) mediante BISCO según norma EN ISO 10077-2:2003
Input – data BISCO
Col. Name
Type
8
28
44
60
119
135
151
170
174
182
214
215
216
217
218
219
220
250
252
253
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SIMPL
BC_SIMPL
BC_SIMPL
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
Col.
8
28
44
60
119
135
151
170
174
182
214
215
216
217
218
219
220
250
252
253
aluminium
insulation
polyamid reinf.
EPDM
temp. sensor 1
temp. sensor 2
temp. sensor 3
exterior
interior (norma
interior (reduc
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity <4x4 mm2
cavity <2x2 mm2
cavity <1x1 mm2
q
[W/m²]
ta
hc
[°C] [W/m²K]
CEN-rule
HE
HI_NORML
HI_REDUC
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
qc
[W/m]
Coupled
lambda
[W/mK]
160.000
0.035
0.300
0.250
160.000
160.000
160.000
eps
[-]
t
h
[°C] [W/m²K]
0.0
20.0
20.0
NO
NO
NO
NO
NO
NO
NO
tr
[°C]
25.00
7.70
5.00
0.218
0.044
0.123
0.091
0.090
0.043
0.142
0.037
0.031
0.028
C1
[-]
C2
[-]
C3
[-]
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0
0
0
Calculation parameters
Contour approximation margin (triangulation) = 0 pixels
3
Iteration cycles = 5
Recalculation of CEN values (before each iteration cycle)
Maximum number of iterations (per iteration cycle) = 10000
Maximum temperature difference = 0.0001°C
Max. heat flow divergence for total object = 0.001 %
Max. heat flow divergence for any node = 1 %
Output – data BISCO
Col. Name
Type
8
28
44
60
119
135
151
170
174
182
214
215
216
217
218
219
220
250
252
253
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SIMPL
BC_SIMPL
BC_SIMPL
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
aluminium
insulation
polyamid reinf.
EPDM
temp. sensor 1
temp. sensor 2
temp. sensor 3
exterior
interior (norma
interior (reduc
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity <4x4 mm2
cavity <2x2 mm2
cavity <1x1 mm2
tmin
[°C]
2.16
0.79
2.30
1.44
12.87
12.98
15.84
0.79
12.84
13.07
2.35
2.28
2.32
12.71
12.77
2.24
2.18
2.37
2.17
1.71
tmax
[°C]
13.08
17.33
12.82
13.82
12.87
12.98
15.84
2.37
17.33
16.61
12.87
2.39
12.81
12.92
12.98
2.35
13.68
13.00
2.23
13.22
ta
[°C]
flow in
[W/m]
flow out
[W/m]
0.00
10.54
0.87
11.42
0.00
0.00
Cálculo del coeficiente de transmisión térmica (Uf)
4
THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2
Theory
The thermal transmittance of a frame according to PrEN 10077-2:
Uf =
L2 D − U p * l p
lf
and
with:
L2D =
q l , tot
∆θ
Uf : thermal transmittance of the window frame [W/m2K]
Up :
lp :
lf :
L2D :
ql,tot :
∆θ :
Calculation
thermal transmittance of the flanking panel [W/m2K]
projected width of the flanking panel [m]
projected width of the window frame [m]
two-dimensional coupling coefficient [W/mK]
total heat flow through the window frame and the flanking panel [W/m]
temperature difference between inside (θi) and outside (θe) [K]
Item:
input data: ql,tot = 11,410 W/m
θe =
0,0
o
C
Rse =
0,04 m2K/W
Rsi =
0,13 m2K/W
L2D =
0,57 W/mK
θi =
20,0 oC
di = 0,0280 m
λi = 0,035 W/m*K
Up =
lp =
1,031 W/m2K
0,190 m
calculation results:
lf = 0,1249 m
Uf =
input data using the Physibel Software BISCO
ql,tot :
alphanumeric output BISKO
heat losses per boundary condition
input data, surface boundary conditions:
∆θ :
inside temperature minus outside temperature
Up :
calculation, using the following formula:
U
p
 1
di
1 
=
+∑
+
λ i h i 
 he
3,00 W/m2K
−1
ext./int. surface heat transfer coeff.
[W/m2K]
he / hi
di
thickness of layer i [m]
thermal conductivity of layer i [W/mK]
λi
lp / lf :
input data: dimensions of the item
PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842
with:
5
Isotermas
6
Flujo de calor
7
B) mediante RADCON con “Know-How” TECHNOFORM
Input – data RADCON
Col. Name
Type
8
28
44
60
119
135
151
156
170
174
182
190
214
215
216
217
218
219
220
250
252
253
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SKY
BC_SKY
BC_SKY
BC_SKY
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
Col.
8
28
44
60
119
135
151
156
170
174
182
190
214
215
216
217
218
219
220
250
252
253
aluminium
insulation
polyamid reinf.
EPDM
temp. sensor 1
temp. sensor 2
temp. sensor 3
insulation far
exterior
interior 1
interior 2
interior 3
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity <4x4 mm2
cavity <2x2 mm2
cavity <1x1 mm2
q
[W/m²]
0
0
0
0
ta
hc
[°C] [W/m²K]
0.0
20.0
20.0
20.0
12.00
2.33
2.50
2.88
CEN-rule
Coupled
NIHIL
NIHIL
NIHIL
NIHIL
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
NO
NO
NO
NO
NO
NO
NO
qc
[W/m]
tr
[°C]
lambda
[W/mK]
160.000
0.035
0.300
0.250
160.000
160.000
160.000
0.035
eps
[-]
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.202
0.043
0.115
0.092
0.091
0.043
0.130
0.037
0.031
0.028
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
t
h
[°C] [W/m²K]
C1
[-]
C2
[-]
C3
[-]
0.0248
0.0243
0.0248
0.0252
0.0252
0.0243
0.0248
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.333333
0.25
0.333333
0.25
0.25
0.25
0.333333
0.0
20.0
20.0
20.0
8
Calculation parameters
Contour approximation margin (triangulation) = 0 pixels
Iteration cycles = 5
Nonlinear radiation
Recalculation of CEN values (before each iteration cycle)
Smallest accepted viewfactor = 0.001
Number of visibility rays between radiative surfaces = 100
Black radiation heat transfer coeff. (linear radiation) = 5.25 W/m²K
Maximum number of iterations (per iteration cycle) = 10000
Maximum temperature difference = 0.0001°C
Max. heat flow divergence for total object = 0.001 %
Max. heat flow divergence for any node = 1 %
Output – data RADCON
Col. Name
Type
8
28
44
60
119
135
151
156
170
174
182
190
214
215
216
217
218
219
220
250
252
253
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SKY
BC_SKY
BC_SKY
BC_SKY
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
aluminium
insulation
polyamid reinf.
EPDM
temp. sensor 1
temp. sensor 2
temp. sensor 3
insulation far
exterior
interior 1
interior 2
interior 3
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity <4x4 mm2
cavity <2x2 mm2
cavity <1x1 mm2
tmin
[°C]
3.26
1.24
3.36
2.49
13.42
13.50
16.11
1.22
1.22
16.65
13.55
13.41
3.37
3.32
3.38
13.31
13.34
3.30
3.28
3.37
3.26
2.74
tmax
[°C]
13.55
16.68
13.37
13.94
13.42
13.50
16.11
17.30
3.37
17.30
16.65
13.55
13.42
3.42
13.36
13.48
13.51
3.39
13.85
13.50
3.35
13.66
ta
[°C]
flow in
[W/m]
flow out
[W/m]
0.00
3.51
0.98
6.43
10.92
0.00
0.00
0.00
9
Cálculo del coeficiente de transmisión térmica (Uf)
THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2
Theory
The thermal transmittance of a frame according to PrEN 10077-2:
Uf =
L2 D − U p * l p
lf
and
with:
L2D =
q l , tot
∆θ
Uf : thermal transmittance of the window frame [W/m2K]
Up :
lp :
lf :
L2D :
ql,tot :
∆θ :
Calculation
input data: ql,tot =
θe =
thermal transmittance of the flanking panel [W/m2K]
projected width of the flanking panel [m]
projected width of the window frame [m]
two-dimensional coupling coefficient [W/mK]
total heat flow through the window frame and the flanking panel [W/m]
temperature difference between inside (θi) and outside (θe) [K]
Item:
10,92 W/m
0,0
o
C
Rse =
0,06 m2K/W
Rsi =
0,13 m2K/W
L2D =
0,55 W/mK
θi =
20,0 oC
di = 0,0280 m
λi = 0,035 W/m*K
Up =
lp =
1,010 W/m2K
0,190 m
calculation results:
lf = 0,1249 m
Uf =
input data using the Physibel Software BISCO
ql,tot :
alphanumeric output BISKO
heat losses per boundary condition
input data, surface boundary conditions:
∆θ :
inside temperature minus outside temperature
Up :
calculation, using the following formula:
U
p
 1
di
1 
=
+∑
+
λ i h i 
 he
2,83 W/m2K
−1
ext./int. surface heat transfer coeff.
[W/m2K]
he / hi
di
thickness of layer i [m]
thermal conductivity of layer i [W/mK]
λi
lp / lf :
input data: dimensions of the item
PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842
with:
10