2D Materials – The New Flatland SS 2014 Ursula Wurstbauer ZNN 1.004 [email protected] 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 1 Timetable Nr Date (10-12) Topic 2 15.04. Fabrication and Making the Invisible Visible (Microscopy Methods) 22.04. Osterferien 29.04. Light Matter Interaction I: Phase Contrast, Ellispometry and Dielectric Constants 06.05. Studentische Vollversammlung 4 13.05. Light Matter Interaction II: Phonons in 2D 5 13.05. 12:15-13:00 Peculiarities of Band-Structure in 2D Materials (brown bag lecture - pizza provided) 6 20.05. Ultrathin Transistor Devices 7 27.05. 2D Material Heterostructures: Optoelectronics 8 03.06. 2D Material Heterostructures: Solar Energy Conversion & Harvesting 10.06. Pfingstferien 9 17.06. Transport Properties and Quantum Phenomena in Graphene 10 24.06. Spin- and Valleytronic in 2D Materials 11 01.07. Topological Insulator - the conducting surface 12 10.07. Recent progress & 2D Materials at TUM and time for questions lab tour subsequent to lecture for interested participants 3 2D Materials SS 14 Fundamental & Future Introduction and Material Overview Devices 08.04. Technology 1 08. 2D Heterostructures: Solar Energy Conversion 2 Last Week … Optoelectronic Devices In general electronic devices that: • detect • generate • control • interact with light (usually in visible and IR regime) Some examples: Photodiode Solar Cells Photoelectric effect Phototransistor (Photovoltaic effect) Photoamplifier Photoresistor Switches Photoconductivity Charge-Coupled Imaging Devices (e.g.CCDs) Light Emitting Diodes (LEDs) (Stimulated) Emission Laser Diodes 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 3 Involved Optical Processes: Reflection (I0R) Propagation 2 n~ 1 R ~ n 1 Luminescence Transmission T=(1-R1)e-at(1-R2) Incident Beam (I0) Scattering Air (n=1) Air (n=1) (Raman, Rayleigh...) I=I0e-Nsz Medium ~) (n= n Absorption of MoS2 t K. F. Mak, et al. Phys. Rev Lett. 105, 136805 (2010). 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 4 Interband Transitions in a nutshell Interband absorption • Electrons promoted from valence band to conduction band by absorbing a photon electron-hole pair generation • Possible for hwph > Eg • Optical transitions are “vertical” on an E-k diagram Transition rate (absorption coefficient) • Transition rate |pcv|2 and JDOS (g(hwph)) Momentum matrix element of central cell parts of the solid wavefunction 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 5 Examples for 2D Material based optoelectronic devices 1. Ultrasensitive TMDC Photodetector Photoresponse Enhancement-mode transistor: Increasing conductivity with increasing light intensity due to absorption of e-h pairs in direct SC. 5µm O. Lopez-Sanchez et al. Nature Nanotech. 8, 497 (2013) 2. Contributions to Photocurrent in MoS2 Iph pA Photocurrent Photovoltaic and thermoelectric contributions to photocurrent 2D Materials SS 14 M. Hoheneder, E. Parzinger et al. (2014) 08. 2D Heterostructures: Solar Energy Conversion 6 3. Ultrafast Graphene Devices F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Nature Nanotechnology 4, 839 (2009). T. Mueller, F. Xia, P. Avouris, Nature Photonics 4, 297 (2010). Fast response Displacement currentdensity E jD 0 t FWHM = 4.4 ± 0.2 ps UThermo = (SGraphene – SStripline) ∙DT, L. Prechtel, et al. Nature Comm. 3, 646 (2012). 2D Materials SS 14 t thermoelectric = 130 ± 10 ps 08. 2D Heterostructures: Solar Energy Conversion 7 2D Materials – The New Flatland Chapter 8 2D Material Heterostructures: Solar Energy Conversion & Harvesting Ursula Wurstbauer ZNN 1.004 Tel: 289 11445 [email protected] 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 8 Today’s Lecture Solar Energy Conversion • General requirements Solar Hydrogen Production by Splitting of Water • Requirements • Principles • Potential for 2D Materials Initial Examples: Photocatalytic Hydrogen Evolution from 2D Materials 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 9 Solar Energy http://www.exergypower.com.au/SolarPower.html 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 10 Power Generation in Germany (January – April 2014) 30% nuclear power brown coal hard coal gas wind solar biomass hydroelectric fossile fuels 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 11 Solar energy conversion - PV Requirements: Sunlight absorption Separation of e-h pairs Transport of electricity 2D Materials SS 14 Transport of e- & h+ to electrodes Storage of electricity 08. 2D Heterostructures: Solar Energy Conversion 12 Transport of electricity • High losses Storage of electricity a) Batteries, Super-capacitors: • Expensive to built o Expensive • ‚Other issues‘ o Limited storage density • No electricity on demand: o Environmental issues no power generation at b) Chemical bonds: o night • Solar fuels e.g. (H2, Methanol, ...) o cloudy, rainy days → Artificial photosynthesis 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 13 Photocatalytic Water Splitting … artificial photosynthesis Requirements for (efficient) photocatalyst: 1. High photo-absorption efficiency in visible regime requirements for solar cell (PV device) 2. Separation of e-h pairs 3. Appropriate charge carrier mobility 4. High stability in water (also under illumination!) 5. Bandgap Egap>1.23eV (energy needed for catalytic process) Additional requirements 6. Band edge suitable for H2O redox potential 7. (High earth abundance) 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 14 1. Absorption efficiency Comparison of ‘traditional’ and new PV materials Standard Solar Spectra visible regime (Bernardi et al., Nano Lett. 2013, 13, 3664) TMD monolayers have high absorbance of 5-10% in visible (thickness of only 6.5 Å!) 15 nm of GaAs or 50 nm of Si are needed to absorb the same fraction of sunlight as a TMD monolayer 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 15 2. Separation of e-h pairs • microscopic process of charge carrier generation & separation • for separation in-plane electric field (built-in) required 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 16 3 Examples to introduce built-in electric field 1. Schottky barrier using MoS2/graphene 3.3 Å 6.5 Å M1/M2: low/high workfunction metals Schottky barrier for holes (p-SB) 2. 2D Material Heterojunction MoS2 WS2 Type-II heterojunction at WS2/MoS2 interface 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 17 3. MoS2 multilayer Schottky junction using different electrodes Device Scheme Scheme of Band structure I-V characteristics • 2.5 % of incident laser power extracted into electrical power • Higher power conversion efficiency expected for 1L-MoS2 Fontana et al., Sci. Rep. 3, 1634 (2013) 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 18 Efficiency of solar cells Power conversion efficiency: PCE PMPP I VMPP IMPP ISC VOC V I V FF PMPP SC OC mW Pincident 100 2 cm FF = PMPP/(UOCxIOC) fill factor: 0.3 - 0.6 Isc = 0.7 x Iabs with 0.7 for internal quantum efficiency VOC depending on system SC: Short circuit OC: Open Circuit MPP: Maximal Power Point Comparison with record ultrathin solar cells Power density values higher than any known energy generation and conversion device 2D Materials SS 14 Bernardi et al., Nano Lett. 13, 3664 (2013) 08. 2D Heterostructures: Solar Energy Conversion 19 3. Charge carrier mobility Egap Graphene Graphene nanoribbon (~10nm) 0 < 200 meV mobility (RT) >15,000 cm2/(Vs) <200 cm2/(Vs) MoS2 - ML 1.9 eV >200 cm2/(Vs) (n-type) WSe2 - ML 1.5 eV >250 cm2/(Vs) (p-type) Si-MOSFET 1.1 eV electrons: <1,500 cm2/(Vs) holes: ~ 450 cm2/(Vs) GaAs 2D Materials SS 14 1.4 eV electrons: ~8,500 cm2/(Vs) holes: ~ 400 cm2/(Vs) 08. 2D Heterostructures: Solar Energy Conversion 20 4. Stability in water ω > Egap ω < Egap t > 3h, P 3mW t > 10s, P ≥ 0.5mW ω > Egap ω > Egap ω < Egap 2D Materials SS 14 t > 10s, P ≥ 0.5mW ω > Egap pristine MoS2: highly stable under illumination in water (no photocorosion!) MoS2 edges: water assisted laser cutting for ω >Egap defected MoS2: water assisted laser cutting for ω >Egap 08. 2D Heterostructures: Solar Energy Conversion 21 5. Bandgap Egap > 1.23eV Solar spectrum MoS2 2D Materials SS 14 WSe2 Monolayer MoS2: Eg = 1.9 eV WSe2: Eg = 1.5 eV 08. 2D Heterostructures: Solar Energy Conversion 22 6. Band edge for H2O redox potential Solar Water Splitting – Principle e- CB H+ e- H2 ħ h+ VB Semiconductor: Oxidation: Reduction: Overall: 2D Materials SS 14 h+ H2O ½O2+2H+ 2ħ 2e- + 2h+ H2O + 2h+ 2H+ + ½O2 2H+ + 2e- H2 H2O + 2ħ H2 + ½O2 08. 2D Heterostructures: Solar Energy Conversion 23 Typical materials stability issue issue with work function RHE 0 MoS2 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 24 Overview water splitting concepts (on example of n-type photoanode watersplitting device) Energetic requirements Involved Processes • Photon irradiation & absorption • Thermodynamic energy to split water • e-h pair creation & separation • Catalytic overpotential for • Charge transport Hydrogene evolution reaction (HER) • Interfacial reactions Oxygen evolution reaction (OER) Z. Chen, H. N. Dinh, E. Miller, Photoelectrochemical Water Splitting, Springer (2013) 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 25 Some numbers • Total solar irradiation per year: 5.4 1024 J • World energy consumption 2012: 5.9 1020 J 1h of sun irradiation enough to cover world energy consumption in a year! • Solar energy “for free” To provide 1/3 of the projected energy need in 2050 from solar energy: • 10 000 solar plants (5km x 5km) with solar energy conversion efficiency of 10% • Required area would be 1% of earth desert area • Production per day: 570 tons of H2 gas (AM1.5G irradiation) K. Maeda et al. J. Phys. Chem. Lett. 1, 2655 (2010) 2D Materials SS 14 Y. Tashibana et al. Nature Photonics 6, 511 (2012) 08. 2D Heterostructures: Solar Energy Conversion 26 MoS2 as efficient photocatalyst Requirements: 1. High photo-absorption efficiency in visible regime 2. Separation of e-h pairs 3. Appropriate charge carrier mobility 4. High stability in water (also under illumination!) 5. Bandgap Egap>1.23eV (energy needed for catalytic process) 6. Band edge suitable for H2O redox potential 7. (High earth abundance) Research on MoS2 as photocatalyst still in its infancy… 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 27 MoS2 as photocatalyst: initial reports 1. Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution Current Density Measurements • • • • Tafel Plot Layer dependent electrocatalysis 1L most effective for Monolayer MoS2 Layer dependent correlated with hopping of electrons in vertical direction Role of edge sites (active sites for catalytic process!) 2D Materials SS 14 Y. Yu et al. Nano Lett. 14, 553 (2014) 08. 2D Heterostructures: Solar Energy Conversion 28 Electrochemical Measurements Andreas Reitinger, WSI (2014) WE: Working Electrode - HER CE: Counter Electrode - OER RE: Reference Electrode (in electrolyte) 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 29 2. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers → role of edge sites for hydrogene evolution reaction Fabrication and crystalline structure vertically alligned layers (CVD process) Possible Edge Sites TEM image D. Kong et al. Nano Lett. 13, 1341 (2013) 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 30 Electrochemical Measurements Polarization curves Tafel Plot HER activity stability test for MoS2 stability test for MoSe2 Catalyst stable in water Edges are chemically active because of dangling bonds D. Kong et al. Nano Lett. 13, 1341 (2013) 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 31 Summary Chapter 8: 2D Material Heterostructures: Solar Energy Conversion & Harvesting • General requirements for solar energy conversion (absorption, e-h separation, transport) • Storage of energy in chemical bonds: solar water splitting Requirements: excellent PV properties in visible regime, thermodynamic potential for redox, stability in water, earth abundance • TMDCs potential as photocatalyst for solar hydrogen production Further readings: M. Bernadi et al., Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using TwoDimensional Monolayer Materials, Nano Lett. 13, 3664 (2013). Y. Yu et al., Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution, Nano Lett. 14, 553 2014). D. Kong, et al., Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers, Nano Lett. 13, 1341 (2013). J. A. Turner, A Realizable Renewable Energy Future, Science 285, 687 (1999). 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 32 Timetable Nr Date (10-12) Topic 2 15.04. Fabrication and Making the Invisible Visible (Microscopy Methods) 22.04. Osterferien 29.04. Light Matter Interaction I: Phase Contrast, Ellispometry and Dielectric Constants 06.05. Studentische Vollversammlung 4 13.05. Light Matter Interaction II: Phonons in 2D 5 13.05. 12:15-13:00 Peculiarities of Band-Structure in 2D Materials (brown bag lecture - pizza provided) 6 20.05. Ultrathin Transistor Devices 7 27.05. 2D Material Heterostructures: Optoelectronics 8 03.06. 2D Material Heterostructures: Solar Energy Conversion & Harvesting 10.06. Pfingstferien 9 17.06. Transport Properties and Quantum Phenomena in Graphene 10 24.06. Spin- and Valleytronic in 2D Materials 11 01.07. Topological Insulator - the conducting surface 12 10.07. Recent progress & 2D Materials at TUM and time for questions lab tour subsequent to lecture for interested participants 3 2D Materials SS 14 Fundamental & Future Introduction and Material Overview Devices 08.04. Technology 1 08. 2D Heterostructures: Solar Energy Conversion 33 2D Materials – The New Flatland Chapter 9 Transport Properties and Quantum Phenomena in Graphene Ursula Wurstbauer ZNN 1.004 Tel: 289 11445 [email protected] 2D Materials SS 14 08. 2D Heterostructures: Solar Energy Conversion 34
© Copyright 2026 Paperzz