1. Objective: Be able to factor a polynomial using synthetic division. Critical Vocabulary: Synthetic Division Example 1: Factor: x3 + 2x2 - 5x - 6 x2(x + 2) -1(5x + 6) p: +/-1, +/-2, +/-3, +/-4, +/-6, +/- 12 q: +/-1 p/q: +/-1, +/-2, +/-3, +/-4, +/-6, +/-12 1 1 1 2 -5 -6 1 3 -2 3 -2 -8 -1 This is a remainder, therefore Not a factor 1 1 2 -5 -6 -1 -1 6 1 -6 0 No remainder, therefore a factor These are all the possible factors of the polynomial (x + 1)(x2 + x - 6) (x + 1)(x + 3)(x - 2) Example 2: Factor: x3 - x2 - 16x 20 p: +/-1, +/-2, +/-4, +/-5, +/-10, +/- 20 q: +/-1 p/q: +/-1, +/-2, +/-4, +/-5, +/-10, +/-20 1 1 1 -1 -16 -20 1 0 -16 0 -16 -36 -1 1 This is a remainder, therefore Not a factor 1 -1 -16 -20 -2 1 -1 2 14 -2 -14 -6 1 These are all the possible factors of the polynomial -1 -16 -20 -2 6 20 -3 -10 0 This is a No remainder, remainder, therefore a therefore Not a factor factor (x + 2)(x2 - 3x - 10) (x + 2)(x + 2)(x - 5) Example 3: Factor: x4 - 11x3 + 27x2 + 11x - 28 p: +/-1, +/-2, +/-4, +/-7, +/-14, +/- 28 These are all the possible factors of the polynomial q: +/-1 p/q: +/-1, +/-2, +/-4, +/-7, +/-14, +/-28 1 1 -11 1 1 -10 27 11 -28 -10 17 28 17 28 0 (x - 1)(x3 - 10x2 + 17x + 28) (x - 1)(x + 1)(x2 - 11x + 28) (x - 1)(x + 1)(x - 4)(x - 7) -1 1 1 -10 17 28 -1 11 -28 -11 28 0 Worksheet: “Factoring: Synthetic Division” Example 4: Factor: 12x5 - 46x4 + 50x3 - 12x2 2 6 6 -23 25 -6 12 -22 6 -11 3 0 2x2(6x3 - 23x2 + 25x – 6) 2(x - 2)(6x2 - 11x + 3) 2(x - 2)(3x - 1)(2x - 3) p: +/-1, +/-2, +/-3, +/-6 q: +/-1, +/-2, +/-3, +/-6 P/q: +/-1, +/-1/2, +/-1/3, +/-1/6, +/-2, +/-2/3, +/-1/6, +/-3, +/-3/2, +/-6 Example 5: Factor: 12x7 - 12x6 - 3x5 - 321x4 + 324x3 + 81x2 - 81x 1 4 4 -4 -1 -107 4 0 0 -1 -108 -1 108 27 -27 -108 0 27 0 27 0 3x(4x6 - 4x5 – x4 - 107x3 + 108x2 + 27x - 27) 3x(x - 1)(4x5 - x3 – 108x2 + 27) 3x(x - 1)(4x2 - 1)(x3 - 27) 3x(x - 1)(2x + 1)(2x - 1)(x - 3)(x2 + 3x + 9) Worksheet: “Factoring: Synthetic Division II”
© Copyright 2026 Paperzz