1. Fill in the coefficients in Taylor expansion sin(32) = sin(pi/6 + x) as A + Bx + Cx^2. Answer: Using Taylor series expansion, value of a function at a point x+Δx is given as F(x+Δx)= F(x) + F’(x)* Δx + F’’(x)* Δx2 +F’’’(x)* Δx3/3! + …….. and so on. In the given question, value of sin(32) needs to be determined. sin(pi/6 + x) = sin(pi/6) + sin’(pi/6)*x +sin’’(pi/6)*x2/2. By comparing the co-efficients, A= sin(pi/6) B=sin’(pi/6) and C=sin’’(pi/6)*1/2. A=0.5. B=sin’(pi/6)=cos(pi/6) B=0.866. C= sin’’(pi/6)*1/2. C= -sin(pi/6)*1/2 C=-0.250. 2. Evaluate the expression x = 32 - pi/6 in radians to 3dp. Answer:32 in radians is = 0.559. x=0.035. 3. Evaluate the error sin(32) - A + Bx + Cx^2 for the x above. Answer:Substituting the value of A, B, C and x found above, we get A + Bx + Cx^2=0.5 + 0.866 * 0.035 -0.25*(0.035)2. A + Bx + Cx^2=0.530 upto 3 decimal points. So, using Taylor series, sin(32) = 0.530 Actual Value of sin(32)=0.529919 Approximating the value upto 3 decimal places, sin(32)=0.530. Error = sin(32)- A + Bx + Cx^2 =0.530 -0.530 =0. Hence, Error = 0.
© Copyright 2026 Paperzz