Math%112%–%Perfect%problem%7% Due%Monday%6/1%in%class% “Best”%solutions%get%extra%credit% % % % % % Name_________________________________%% tan a + tanb .% 1− tan a tanb 2 tan x 1) Use%this%to%prove%the%double%angle%formula,%that% tan ( 2x ) = .%Hint:% tan ( 2x ) = tan ( x + x ) %% 1− tan 2 x % 2) Use%the%angle%addition%formula%and%the%result%from%part%1%to%prove%the%triple%angle%formula,% 3tan x − tan 3 x that% tan ( 3x ) = .%Hint:% tan ( 3x ) = tan ( 2x + x ) %% 1− 3tan 2 x % 3) Use%the%angle%addition%formula%and%the%result%from%part%1%to%prove%the%quadruple%angle%formula,% 4 tan x − 4 tan 3 x that% tan ( 4x ) = .%Hint:% tan ( 4x ) = tan ( 2x + 2x ) %% 1− 6 tan 2 x + tan 4 x % 4) Use%the%angle%addition%formula%and%the%result%from%part%2%to%confirm%the%quadruple%angle% 4 tan x − 4 tan 3 x formula,%that% tan ( 4x ) = .%Hint:% tan ( 4x ) = tan ( 3x + x ) %% 1− 6 tan 2 x + tan 4 x % % The%tangent%angle%addition%formula%states%that% tan ( a + b ) =
© Copyright 2026 Paperzz