ARS Small Watershed Model DeCoursey, D.G. IIASA Collaborative Paper December 1982 DeCoursey, D.G. (1982) ARS Small Watershed Model. IIASA Collaborative Paper. IIASA, Laxenburg, Austria, CP82-089 Copyright © December 1982 by the author(s). http://pure.iiasa.ac.at/2029/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR ARS SMALL WATERSHED MODEL D. G . DeCoursey December 1982 CP-82-89 C o Z Z a b o r a t i v e Papers r e p o r t work which h a s n o t been performed s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s a n d which h a s r e c e i v e d o n l y l i m i t e d review. V i e w s or opinions expressed herein do n o t n e c e s s a r i l y r e p r e s e n t t h o s e o f t h e I n s t i t u t e , i t s N a t i o n a l Member O r g a n i z a t i o n s , o r o t h e r o r g a n i z a t i o n s s u p p o r t i n g t h e work. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 L a x e n b u r g , A u s t r i a AUTHOR D r . D.G. DeCoursey i s a r e s e a r c h h y d r a u l i c e n g i n e e r a t t h e USDA-ARS N o r t h e a s t Watershed Research C e n t e r , S e d i m e n t a t i o n L a b o r a t o r y , F o r t C o l l i n s , Colorado, USA. PREFACE The global population growth and the increasing demand for agricultural products led to the extension of agricultural land and the intensification of land use. Therefore, optimal land use is a very important practical problem of the interaction of agricultural management and the environment, and the mathematical models are useful tools for analyzing this interaction. During 1978-1981 a task "Environmental Problems of Agriculture" within the Resources and Environment Area of IIASA used a complex field level model (CREAMS) for analysis of the problems of soil erosion, nitrogen leaching, phosphorus and pesticide losses. This model (CREAMS) which was developed by U.S. Department of Agriculture was used in Czechoslovakia, England, FRG, Finland, Poland, Sweden and USSR. The results of this use will be published at IIASA as a CPS (forthcoming). One of the special questions of the task "Environmental Problems of Agriculture" was the problem of transition of a field level model to a regional one. The SWAM model which is described in this paper is one of the attempts to describe the management of land use within the catchment area. The SWAM (Small Watershed Agricultural Model) uses the dynamic version of the improved CREAMS model (CREAMS 11) and may be useful to investigate the effect of agricultural management and evaluate the hydrologic sediments and chemicals from a small watershed. V. Svetlosanov Task Leader Land and Landcover Resources ACKNOWLEDGEMENTS The development of SWAM i s an ARS team e f f o r t t o which a l a r g e number of people a r e c o n t r i b u t i n g . D r . Roger Smith i s developing much of t h e dynamic v e r s i o n of t h e CREAMS I1 model and i s r e s p o n s i b l e f o r much of t h e m a t e r i a l p r e s e n t e d i n t h a t s e c t i o n o f t h i s r e p o r t . He has r e c e i v e d a l o t of s u p p o r t from o t h e r members of t h e CREAMS team. They a r e Drs. Walter K n i s e l , Chairman; Ralph Leonard, George F o s t e r , A r l i n Nicks, Jimmy Williams and V i r g i n i a F e r r e i r a . D r . Keith Saxton h a s p a r t i c i p a t e d a c t i v e l y i n d i s c u s s i o n s of p l a n t growth modeling and w i l l be a i d i n g i n e v a l u a t i o n . D r . George F o s t e r c o n t r i b u t e d much t o t h e development of sediment r o u t i n g on s o u r c e a r e a s through numerous d i s c u s s i o n s of o v e r l a n d e r o s i o n p r o c e s s e s . D r . C a r l o s Alonso i s r e s p o n s i b l e f o r development of t h e channel r o u t i n g of b o t h w a t e r and sediments. He w i l l a l s o b e p l a y i n g a major r o l e i n assembly and t e s t i n g of t h e e n t i r e SWAM model. D r . Harry Pionke has been r e s p o n s i b l e f o r c o o r d i n a t i n g development of t h e chemistry components' b e h a v i o r and t r a n s p o r t through t h e channel system. D r s . B i l l Gburek and Yui Liong a r e r e s p o n s i b l e f o r development of t h e groundw a t e r component. Drs. Frank Schiebe and Ron Menzel a r e r e s p o n s i b l e f o r t h e r e s e r v o i r model. D r . Myron Molnau c o n t r i b u t e d t o t h e development of t h e snow accumulation and m e l t r o u t i n e s . D r . Wade N u t t e r was r e s p o n s i b l e f o r a d o p t i n g , t h e model t o timbered a r e a s . D r . Clarence Richardson developed t h e models being used t o g e n e r a t e t h e s y n t h e t i c c l i m a t o l o g i c a l i n p u t s . M r . J . B . Burford h a s assembled t h e many d a t a s e t s needed f o r t e s t i n g . Others such a s Drs. Harry Kunishi, Leonard Lane, Ken Renard, Ronald Schnabel and John S c h r e i b e r have a l s o a i d e d i n i t s development. When t h e f i n a l document i s completed, t h e s e and many o t h e r s w i l l have c o n t r i b u t e d . ABSTRACT I n t h i s paper I have attempted t o d e s c r i b e t h e SWAM development by ARS. It began s e v e r a l y e a r s ago w i t h t h e work on CREAMS. The Small Watershed Model u s e s t h e dynamic v e r s i o n of CREAMS I1 a s i t s core. The o u t p u t s from a l l s o u r c e a r e a s w i t h i n a small watershed a r e r o u t e d through t h e channel and impoundment systems t o t h e downstream p o i n t . The dynamic v e r s i o n of CREAMS I1 p r o v i d e s a continuous r e c o r d of w a t e r , sediment and chemicals from each f i e l d i n t h e watershed. A dynamic channel r o u t i n g scheme r o u t e s t h e water and sediments, by p a r t i c l e s i z e f r a c t i o n , c a l c u l a t i n g b o t h a g g r a d a t i o n and d e g r a d a t i o n ; bed armoring i s a l s o included. The r e s e r v o i r model c a l c u l a t e s p r o f i l e s of temper a t u r e and sediment c o n c e n t r a t i o n a s well a s t h e e f f e c t s of b i o l o g i c a l a c t i v i t y on n u t r i e n t l e v e l s . Most of t h e s i g n i f i c a n t chemical b a l a n c e s and changes a r e aonsidered a s t h e flow moves from r e a c h t o reach. However, much remains t o be done t o make t h e combined program u s e f u l t o a wider range of a p p l i c a t i o n s . T h i s c o n s i s t s of s e n s i t i v i t y a n a l y s e s t o reduce t h e model complexity i n insens i t i v e r e g i o n s and t o f i n d e f f i c i e n t ways t o a g g r e g a t e a r e a s such t h a t a b a s i n s c a l e model can be developed. TABLE OF CONTENTS INTRODUCTION INITIAL CONCEPTS WATERSHED DELINEATION AND CLIMATIC INPUTS SOURCE AREA RESPONSE Precipitation Intercept ion Infiltration Moisture Flow i n t h e Root Zone Surface Detention Surf a c e Runoff Erosion Evapotranspiration P l a n t Growth and Decay Nitrogen Cycle Phosphorus Cycle P e s t i c i d e Processes Timbered Areas CHANNEL, RESERVOIR AND GROUNDWATER PROCESSES Routing Water and Sediments i n t h e Channel System The Groundwater Component Reservoir Processes Movement of Chemicals through t h e Channel System FUTURE EFFORTS REFERENCES ARS SMALL WATERSHED MODEL D.G. DeCoursey INTRODUCTION A group of Agricultural Research Service CARS) scientists met in Arlington, Texas, in 1980 to discuss the ARS response to expressed needs for information and analytical tools that planners could use in responding to questions on nonpoint source pollution (Section 208 of Public Law 92-500, The Clean Water Act). We felt that the ARS could respond to these needs of action agencies and planners because we had been doing research in this area for many years. At the meeting three levels of involvement were identified. The first of these to receive attention was the development of a model to simulate runoff, erosion and chemical movement from an agricultural field. A state-of-the-art mathematical model of Chemical, Runoff and Erosion from ~~ricultural Management Systems known as CREAMS (Knisel, 1980) was published by USDA as Conservation Research Report No. 26, in May, 1980. At this time, the model is being updated and improved. The dynamic version of this improvement is the core of the second model, that of a small watershed (SWAM). The purpose of this model development is to simulate the response of a small watershed (2000 hectares) to alternative land use or management changes within its catchment area. It is limited in size because responses from all the unit areas within the watershed are routed downstream through the channel and any impoundments; and only a few such a r e a s can be handled e f f a c t i v e l y . The t h i r d model, i d e n t i f i e d a t t h e meeting, was one designed t o s i m u l a t e t h e response from a b a s i n s c a l e a r e a ( s e v e r a l hundred square k i l o m e t e r s ) . I t w i l l be designed t o a g g r e g a t e a r e a s such a s t h o s e a d d r e s s e d by CREAMS and i d e n t i f i e d i n d i v i d u a l l y i n SWAM. The s m a l l watershed model w i l l be used i n a s i m u l a t i o n mode t o h e l p i d e n t i f y t h e b e s t way t o a g g r e g a t e t h e s e a r e a s . T h i s paper, t h e f i r s t of a s e r i e s of p a p e r s d e s c r i b i n g SWAM, desc r i b e s t h e v a r i o u s s u b r o u t i n e s t h a t a r e being combined i n t o t h e f i r s t v e r s i o n of t h e model. F u t u r e papers w i l l d e s c r i b e t h e s e n s i t i v i t y ana- l y s e s , more r e f i n e d v e r s i o n s of t h e model and sample a p p l i c a t i o n s . A USDA p u b l i c a t i o n is being planned t h a t d e s c r i b e s t h e model i n d e t a i l , p r o v i d e s a u s e r s manual and t e c h n i c a l p a p e r s s u p p o r t i n g v a r i o u s components. INITIAL CONCEPTS The s m a l l watershed model is b e i n g designed t o show t h e e f f e c t of changes i n l a n d u s e o r management on t h e h y d r o l o g i c , sediment, and chemical response of a s m a l l watershed. S i n c e i t u s e s CREAMS a s a b a s e , it is a p p l i c a b l e t o c o n s e r v a t i o n t i l l a g e , crop r o t a t i o n , double cropping c o n t o u r i n g , s t r i p cropping, t e r r a c e s and g r a s s e d waterways. of t h e model is e v a l u a t i o n of management a l t e r n a t i v e s , The emphasis t h u s t h e response should be r e a s o n a b l y a c c u r a t e f o r b o t h a b s o l u t e and r e l a t i v e e s t i m a t e s of a specific practice a t a site. The model i s b e i n g designed t o u s e on engaged a r e a s , t h u s i t is i n t e n d e d t o be used w i t h o u t c a l i b r a t i o n . For most purposes c h a r t s , t a b l e s , graphs and maps w i l l p r o v i d e parameter v a l u e guidance f o r t h o s e s i t u a t i o n s where o n - s i t e e s t i m a t e s o r p r e v i o u s experience a r e not a v a i l a b l e t o a i d i n t h e i r s e l e c t i o n . Because of t h e wide v a r i e t y of s i t u a t i o n s t o which i t i s l i k e l y t o be a p p l i e d , t h r e e t y p i c a l s i t e c o n d i t i o n s were c o n s i d e r e d i n i t s development,i) s m a l l watersheds i n which t h e flow i s dominated by s u r f a c e flow i n t h e channel system, i i ) s m a l l watersheds i n which t h e flow i s dominated by s u r f a c e w a t e r impoundments, and i i i ) s m a l l watersheds i n which t h e flow i s domina t e d by s u b s u r f a c e flow. By c o n s i d e r i n g a l l t h r e e s i t u a t i o n s i n t h e development of t h e model we should b e a b l e t o a d d r e s s most s i t e problems t h a t a r e combinations of t h e s e t h r e e . I n i t s i n i t i a l form, t h e model w i l l b e v e r y comprehensive and w i l l probably be more of a r e s e a r c h than a management t o o l . . I t was developed t h i s way because we f e l t t h a t such a model could b e used i n more s i t u a t i o n s than simpler models. I t i s a l s o much e a s i e r , through s e n s i t i v i t y a n a l y s e s , t o s i m p l i f y a comprehensive model where i t i s l e a s t s e n s i t i v e , than t o t a k e a s i m p l e model and make i t more comprehensive. Because i t i s comprehensive, a t l e a s t i n i t s i n i t i a l c o n f i g u r a t i o n , i t i s n o t p r a c t i c a l f o r l o n g term (20 y e a r s o r more) s i m u l a t i o n s . I t w i l l be a continuous s i m u l a t i o n model of watershed response t o i n d i v i d u a l e v e n t s f o r a period of s e v e r a l y e a r s . A s i t i s r e f i n e d , through s e n s i t i v i t y a n a l y s e s t o both s i m p l i f y i t and develop methods t o a g g r e g a t e a r e a s , i t w i l l become more u s e f u l f o r l o n g term s i m u l a t i o n . Because of t h e many p h y s i c a l p r o c e s s e s t h a t a r e b e i n g s i m u l a t e d , i t i s d i f f i c u l t t o g r a s p a p i c t u r e of t h e whole model and a l l t h e i n t e r - - a c t i o n t h a t takes place. F i g u r e 1 i s a schematic of t h e e n t i r e model showing a l l of t h e p r o c e s s e s t h a t a r e t o be i n c l u d e d . d i s c u s s e d i n more d e t a i l i n l a t e r p a r t s of t h i s paper. model a s comprehensive a s t h i s a r e e x t e n s i v e . Each of t h e s e i s Inputs f o r a F i g u r e 2 i s an expansion of t h e major i n p u t groups a t t h e t o p of F i g u r e 1. I n t h e n e x t s e c t i o n of t h e r e p o r t I w i l l d e s c r i b e t h e dynamic v e r s i o n of CREAMS I1 t h a t s e r v e s a s t h e s o u r c e a r e a and i s t h e c o r e of SWAM. E s s e n t i a l l y i t is the c e n t e r p a r t of F i g u r e 1, n o t e d a s s o u r c e a r e a p r o c e s s e s . Subroutines have been developed t o provide sequences of d a i l y r a i n f a l l , temperature and s o l a r r a d i a t i o n f o r u s e a t s i t e s where t h e s e d a t a a r e n o t r e a d i l y a v a i l a b l e (Richardson, 1981). a r e being developed f o r wind and pan e v a p o r a t i o n . Similar subroutines Techniques a r e a l s o being i n v e s t i g a t e d t o d i s a g g r e g a t e t h e s e t o provide t h e h o u r l y o r breakp o i n t t y p e i n p u t s r e q u i r e d of t h e more comprehensive model. sets a s p o s s i b l e a r e being assembled t o t e s t t h e model. A s many d a t a However, no one d a t a s e t has been found t h a t is complete enough t o cover a l l a s p e c t s of t h e model. WATERSHED DELINEATION AND CLIMATIC INPUTS I n o r d e r t o u s e t h e model, t h e e n t i r e watershed must be d i v i d e d i n t o source areas. sible. These a r e a s a r e a s uniform i n s o i l s and l a n d u s e a s pos- Response from each of t h e s e a r e a s i s s i m u l a t e d by d e f i n i n g t h e source a r e a s a s a system of p l a n e s and V-shaped channels ( a minimum number a r e u s e d ) . A t t h i s p o i n t , t h e r e i s no a g g r e g a t i o n of a r e a s ; t h e response of each a r e a i s c a l c u l a t e d i n d i v i d u a l l y . Methods of a g g r e g a t i o n by s i m i l a r crops, s o i l s o r s m a l l mixed l a n d u s e watersheds w i l l be s t u d i e d by using t h e model i n a s i m u l a t i o n mode, l o o k i n g a t t y p i c a l responses from a v a r i e t y of d i f f e r e n t watershed c o n f i g u r a t i o n s . paper w i l l r e p o r t on t h e s e e v a l u a t i o n s . A future ---------I I SOURCE A R E A ~-P-R,?25S,fl-! ~ ; c ~ ~ i i i i l ~iiZGIV07fq i-~~c---!RO-c_ESS-ES_ nes~nrnm RoUrIWi WATER. CHEMISTRY m CIIOCUSES PI*KLUES COTSIDE -UCS t I I 1 r ,,J e COClCOIU I ROUIlNO EEOIUCNT. ABSOIBED CYEYSILS e WWY t Y SEDIMENT R E K W R S W CHANNELS WATER Figure 1. 1 SALT -0u ac ~ m n 1 a C*OUC)I*O CIKWCALS 8IQOCILlL MOCESSES nE-In ROUTIrn. WATER 1 1 NIT- - S m a l l Watershed Model (SWAM) MANAGEMENT 0 LANOUSE CULTURAL PRACTICES TILLAGE NUTRIENTS WHEN a m3w APPLIED PESTICIDES WHEN 8 HOW ARIED ANIMAL STXKING RATES 8 WASTE CONSERVATION PRACTICE FOR EROSION CONTROL WATERWAYS TERRACES CONTINUOUS STRIP ROTATIONS BUFFER EROOING - PARALLEL TILE-OUTLET PASTURE CONDITIONS TOWGRAPHICA L CHARACTER ISTICS 0 GULLIES PONDS 8 RESTRICTED OUTLETS MANNEL ROUGHNESS ASPECT GEOLOGICAL CONDITIONS TEXTM CWWGTlVlTY POROSlTY SOL MDLSNRE METEOROLOGICAL SECTIONS (7 GROUND WATER CoNWCTlVlTY SPECIFIC /q DIRECTION fT1 AIR-SOIL ALBEOO EVAP. I N I T I A L CONDITIONS 0 MOISTURE F i g u r e 2. BlOWASS WATER SWAM Inputs RESERVOIR STORAGE STOCK WATERSHED GURATION SLOPE a Output from t h e s o u r c e a r e a watersheds ( w a t e r , sediments and chemic a l s ) w i l l be r o u t e d through t h e channel and impoundment systems t o t h e o u t l e t of t h e watershed. Thus t h e c h a n n e l s must be d e s c r i b e d by c r o s s s e c t i o n , bank and bed m a t e r i a l s and v e g e t a t i v e cover a t r e p r e s e n t a t i v e n o d a l p o i n t s ; such a s a t channel confluences and major change i n c r o s s s e c t i o n , s l o p e , r a d i u s of c u r v a t u r e o r bed and bank c o n d i t i o n s . depth-area-capacity The curve and o u t l e t s t r u c t u r e of a l l impoundments a r e a l s o needed o r must be e s t i m a t e d . P o i n t s of groundwater r e t u r n t o t h e channel o r l o s s e s from t h e channel t o groundwater must be i d e n t i f i e d . C l i m a t i c i n p u t t o t h e model c o n s i s t s of b r e a k p o i n t r a i n f a l l , maximum and minimum d a i l y a i r t e m p e r a t u r e s and s o l a r r a d i a t i o n . computations u s e pan e v a p o r a t i o n and wind speed. A l t e r n a t i v e ET A t t h e p r e s e n t t i m e we a r e c o n c e n t r a t i n g on development of t h e model u s i n g b r e a k p o i n t r a i n f a l l because w e have much more confidence i n t h e h y d r o l o g i c r e s p o n s e of t h e model w i t h t h i s i n p u t r a t h e r t h a n d a i l y v a l u e s . When w e s t a r t work on t h e v e r s i o n designed f o r l o n g term s i m u l a t i o n we w i l l probably use d a i l y inputs. SOURCE AREA RESPONSE The dynamic v e r s i o n of CREAMS 11, which forms t h e n u c l e u s of t h e SWAM model, i s a s i g n i f i c a n t r e v i s i o n of t h e CREAMS model. The t h r e e independent components of CREAMS (hydrology, e r o s i o n and chemicals) have been combined t o e n a b l e t h e i n t e r a c t i o n s t h a t e x i s t t o o p e r a t e p r o p e r l y . Many of t h e p r o c e s s e s have been updated and new ones added e . g . p r e c i p i t a t i o n i n t e r c e p t i o n by t h e p l a n t canopy, t h e e f f e c t s of t i l l a g e on i n f i l t r a t i o n and a dynamic s o i l e r o s i o n component. Figure 3 is a conceptuali- z a t i o n of t h e movement of w a t e r i n t h e model. The f o l l o w i n g d i s c u s s i o n r e f e r s t o t h e p r o c e s s e s shown i n F i g u r e 3. Precipitation P r e c i p i t a t i o n i n p u t i s d i v i d e d i n t o snow o r r a i n f a l l a s a f u n c t i o n of t h e maximum and minimum d a i l y a i r temperature. p e r a t u r e is l e s s than o r e q u a l t o 0 assumed t o be snow. equivalent. 0 C (32' I f weighted a i r tem- F) t h e p r e c i p i t a t i o n i s Snow accumulation i s i n t h e form of mm. of w a t e r Snowmelt (Khanjani and Molnau, 1 9 8 2 ) i s a f u n c t i o n of incom- i n g s o l a r r a d i a t i o n , albedo, shading and maximum and minimum a i r temperat u r e , r a i n f a l l , a s p e c t and s l o p e of t h e s i t e , and h e a t g a i n from t h e s o i l surface. Snow e v a p o r a t i o n i s a f u n c t i o n of t h e maximum and minimum a i r temperature, s o l a r r a d i a t i o n and albedo, which changes w i t h age of t h e snow and is a f u n c t i o n of accumulated degree hours. Figure 3. Water movement on source areas Interception Before r a i n f a l l r e a c h e s t h e s o i l s u r f a c e , some of i t is i n t e r c e p t e d by t h e p l a n t canopy. s t o r y , is p o s s i b l e . A m u l t i - s t o r y canopy, such a s t r e e s over an underL i t t e r on t h e ground under a row c r o p o r o t h e r canopy is a l s o c o n s i d e r e d t o i n t e r c e p t r a i n f a l l . I n t e r c e p t P o n is c a l - c u l a t e d a s a l i n e a r f u n c t i o n of t h e l e a f a r e a index. Mulch is d e s c r i b e d a s p e r c e n t cover and i t s i n t e r c e p t i o n t r e a t e d t h e same a s l e a f a r e a . Evaporation i s assumed t o come f i r s t from i n t e r c e p t i o n s t o r a g e b e f o r e t h a t from t h e s o i l s u r f a c e . Any d e f i c i t i n i n t e r c e p t i o n s t o r a g e is f i l l e d by r a i n f a l l i n t h e n e x t p r e c i p i t a t i o n e v e n t . Infiltration P r e c i p i t a t i o n t h a t p a s s e s through t h e canopy and l i t t e r i n f i l t r a t e s into the soil. Two a l t e r n a t i v e methods a r e a v a i l a b l e t o e s t i m a t e i n f i l - t r a t i o n ; t h e Smith and P a r l a n g e (1978) and t h e Green and Ampt (Moore, 1981) e q u a t i o n s . Brooks-Cory Parameters of t h e e q u a t i o n s a r e e s t i m a t e d by u s i n g t h e (Corey e t a l . , the s o i l properties. 1965 and L a l i b e r t e e t a l . , 1966) r e l a t i o n s and S i n c e t i l l a g e a f f e c t s t h e macro p o r e s , i t is con- sidered i n calculating i n f i l t r a t i o n rate. The s i z e of t h e macro p o r e s a r e a f u n c t i o n of r e l a t i v e s u r f a c e roughness and t h e s o i l t y p e . depth of t i l l a g e depends upon t h e implement and i t s use. The Both t h e s u r - f a c e roughness and macro pore s i z e decay w i t h p r e c i p i t a t i o n f o l l o w i n g a t i l l a g e operation. Moisture Flow i n t h e Root Zone The s o i l i n t h e r o o t zone can b e d e s c r i b e d by a s many a s 10 h o r i z o n s o r layers. Each of t h e s e l a y e r s i s c h a r a c t e r i z e d by i t s p o r o s i t y , pore s i z e d i s t i b u t i o n i n d e x , 15-bar w a t e r c o n t e n t , 0.3-bar e f f e c t i v e saturated hydraulic conductivity. w a t e r c o n t e n t and Each of t h e l a y e r s is f u r - t h e r d i v i d e d by t h e computer s u b r o u t i n e i n t o a s many a s 15 l a y e r s f o r computational purposes. Routing of water between t h e l a y e r s is accom- p l i s h e d by a l i n e a r i z e d step-wise s o l u t i o n of t h e Richards e q u a t i o n i n which t h e g r a v i t y and d i f f u s i o n terms a r e t r e a t e d s e p a r a t e l y t o i n s u r e s t a b i l i t y and l e n g t h e n b o t h t h e a l l o w a b l e time and t h e d i s t a n c e i n c r e ments. Roots e x t r a c t w a t e r from t h e s o i l l a y e r s i n p r o p o r t i o n t o t h e s o i l m o i s t u r e p o t e n t i a l i n each l a y e r ( s e e s e c t i o n on p l a n t growth). Surface Detention S u r f a c e d e t e n t i o n i s a f u n c t i o n of roughness, s o i l t y p e , t i l l a g e and amount of p r e c i p i t a t i o n s i n c e t h e l a s t t i l l a g e e v e n t . S u r f a c e Runoff S u r f a c e r u n o f f o c c u r s o n l y a f t e r ponding h a s o c c u r r e d and s u r f a c e detention is f i l l e d . Using r a i n f a l l b r e a k p o i n t s , s u r f a c e w a t e r i s r o u t e d , w i t h a k i n e m a t i c approximation, of f l o w o v e r a p l a n e / c h a n n e l cascade. I t c a n p r o v i d e f o r convergent o r d i v e r g e n t flow, furrow geome- t r y , and r e c e s s i o n i n f i l t r a t i o n . The roughness parameter i s a f u n c t i o n of t i l l a g e , t h e e f f e c t s of p r e c i p i t a t i o n energy s i n c e t h e l a s t t i l l a g e o p e r a t i o n and l i t t e r o r p l a n t d e n s i t y i n t h e c a s e of r a n g e o r p a s t u r e land conditions. Erosion Sediment eroded from t h e s o i l s u r f a c e i s c a l c u l a t e d u s i n g t i m e i n t e r v a l s determined by t h e r a i n f a l l and i n f i l t r a t i o n r a t e s . of t h e p r o c e s s e s i n v o l v e d i s shown i n F i g u r e 4. A schematic The t r a n s p o r t sub- r o u t i n e s have been a d a p t e d from Kineros (Smith, 1976a and b and Smith, 1981 a and b ) . Sediment p a r t i c l e s a r e assumed t o b e detached by b o t h r a i n f a l l and flowing w a t e r and t r a n s p o r t e d by t h e w a t e r . Interrill detachment of s o i l p a r t i c l e s by r a i n f a l l o c c u r s whether o r n o t t h e r e i s s u r f a c e runoff. However, s i n c e t h e y cannot b e t r a n s p o r t e d , r a i n f a l l detachment i s n o t c o n s i d e r e d u n t i l r u n o f f b e g i n s . I t i s a f u n c t i o n of r a i n f a l l i n t e n s i t y and a s o i l e r o d i b i l i t y f a c t o r r e l a t e d t o s o i l t y p e . Detachment i n r i l l s by f l o w i n g water i s a f u n c t i o n of t h e e x c e s s t r a n s port capacity. A bookkeeping scheme e n a b l e s us t o c a l c u l a t e a l l of t h e above f o r a range of p a r t i c l e s i z e s and d e n s i t i e s . S i n c e b o t h r i l l and i n t e r i l l e r o s i o n a r e c o n s i d e r e d , t h e c o n c e n t r a t i o n s of b o t h s u r f a c e a p p l i e d and i n c o r p o r a t e d c h e m i c a l s , t h a t a r e a t t a c h e d t o s o i l p a r t i c l e s , can b e i d e n t i f i e d and c a l c u l a t e d . The topography i s c o n s i d e r e d t o b e made up of c a s c a d e s of p l a n e s and c h a n n e l s , a l l of t h e many c o n s e r v a t i o n p r a c t i c e s such a s s t r i p c r o p p i n g , t e r r a c e s , g r a s s waterways, convex, concave, complex s l o p e s and s m a l l impoundments c a n b e s i m u l a t e d and b o t h aggradat i o n and d e g r a d a t i o n r a t e s determined. Output c o n s i s t s of t h e q u a n t i t i e s of e a c h of s e v e r a l c l a s s e s of sediment p a r t i c l e s i z e s i n t r a n s p o r t d u r i n g each t i m e i n t e r v a l . a l s o defined . Both o r g a n i c m a t t e r and any a t t a c h e d chemicals a r e .El INPUT n ADSORBED CHEMICALS SURFACE AGGRADATION DEGRADATION PARTICLES DETACHED 1 SEDIMENT a ORGANIC MATTER TRANSPORTED Figure 4 . ORGANIC MATTER DETACHED Sediment eroded on source a r e a s . Incoming energy d i s s i p a t i o n i s s p l i t between s o i l s u r f a c e evaporat i o n and e v a p o t r a n s p i r a t i o n . Evaporation from t h e exposed s o i l s u r f a c e i s i n f l u e n c e d by any mulch t h a t may b e p r e s e n t and i s a modified form of t h e Penman-Montieth method ( R i t c h i e , 1972). E v a p o t r a n s p i r a t i o n from t h e p l a n t s u r f a c e d u r i n g i n t e r s t o r m p e r i o d s i s assumed t o occur a t p o t e n t i a l r a t e u n t i l i t cannot b e provided by w a t e r from t h e r o o t zone. Limiting c o n d i t i o n s i n any l a y e r b e g i n s a t a m o i s t u r e c o n d i t i o n 20 p e r c e n t above t h e 15 b a r t e n s i o n v a l u e . No w a t e r i s a v a i l a b l e from s o i l w i t h a moisI f n e t s o i l l a y e r water is l e s s than t u r e t e n s i o n of 15 b a r s o r g r e a t e r . t h e 20 p e r c e n t v a l u e , t h e amount provided i s a f u n c t i o n of t h e remaining w a t e r above t h e 15 b a r t e n s i o n v a l u e . P l a n t growth i s l i m i t e d by r e g i o n s of s o i l t h a t a r e completely s a t u r a t e d o r have a m o i s t u r e t e n s i o n g r e a t e r than 15 b a r s . P o t e n t i a l e v a p o t r a n s p i r a t i o n r a t e can be c a l c u l a t e d by R i t c h i e ' s method ( R i t c h i e , 1972) o r u s i n g pan e v a p o r a t i o n w i t h a c o e f f i cient. I f t h e i n t e r s t o r m p e r i o d i s l e s s t h a n a day, p o t e n t i a l evapo- t r a n s p i r a t i o n i s d i s t r i b u t e d between dawn and dusk i n a s i n u s o i d a l pattern. Dawn and dusk t i m e s a r e c a l c u l a t e d by an a l g o r i t h m from Mohler and G i f f o r d (Khanjani and Molnau, 1982). P l a n t Growth and Decay The e x t e n t of p r o t e c t i o n provided by t h e canopy i s c a l c u l a t e d by a p l a n t growth model ( s e e F i g u r e 5 ) . Actual p l a n t growth i s a m o d i f i c a t i o n of p o t e n t i a l growth; w i t h p o t e n t i a l growth being a f u n c t i o n of t h r e e i n p u t v a r i a b l e s d e f i n e d f o r each crop. They a r e i ) t h e energy e f f i c i e n c y of biomass p r o d u c t i o n , i i ) maximum p o t e n t i a l d r y m a s s p r o d u c t i o n and i i i ) average degree-days t o m a t u r i t y . modify t h e p o t e n t i a l growth curve. Water, temperature and n i t r o g e n s t r e s s T h i s form of growth model can v e r y e a s i l y show regrowth r e s p o n s e t o h a r v e s t i n g , such a s f o r a l f a l f a o r o t h e r g r a s s crops. However, y i e l d of t h e crop i s n o t a primary o b j e c t i v e of t h e model a t p r e s e n t , t h u s i t is assumed t o be a f u n c t i o n of t h e d r y m a t t e r produced. D i e back a f t e r r e a c h i n g m a t u r i t y c o n v e r t s t h e l e a f a r e a t o s t a n d i n g d r y m a t t e r which t h e n b e g i n s t o f a l l and becomes s u r f a c e residue. P a p e r s d e s c r i b i n g t h e s e p r o c e s s e s w i l l be p r e p a r e d by t h e team working on r e v i s i o n of t h e CREAMS model i n t h e n e x t few months. INPUT CANOPY CROP YIELD AREA WATER LAYER NUTRIENT UPTAKE BIOMASS ACCUMU LATION ADSORBED NEtP TRANSWRTED - LAYER I - RELEASED SOLUBLE Nap - EXTRACTED Figure 5. OVER LAND FLOW - SOLUBLE N 8 P RANSPORTED Biomass growth and decay ADSORBED NEtP Decomposition of surface residue is a function of contact area with the soil. If the field is plowed, the surface biomass is incorporated and decomposes at a rate determined by mineralization rate in the nitrogen cycle. If the field is not plowed, only the material in contact decomposes by mineralization. As it decomposes additional material comes in contact with the soil until eventually d l is decomposed. At-the present time, the nutrients considered in the decomposition are phosphorus and nitrogen. Both the nutrients and carbon accumulations are based on the carbon-nitrogen ratios of the plant and average nutrient content. The concentration or density of plant roots in any one soil layer is assumed to be great enough to provide that fraction of the water that the hydrostatic pressure gradient indicates should come from that layer. Thus, only the penetration depth of the roots is needed. It is assumed to be a nonlinear function of plant growth, i.e. root penetration is faster early in the season. Nutrient uptake by the roots is assumed to be sufficient to meet the plant's needs. Nutrient stress occurs only when the nutrients in the soil profile are insufficient. Heat Flux: Since many of the nutrient processes as well as snowmelt are dependent upon soil temperature, a heat flux model is provided. It solves the second order differential equation for heat flow using the same soil layers as those used for water movement, but with the nodes assumed to be at the layer boundaries. The temperature, several cm. below at the base of the root zone, is assumed constant. Only daily average temperatures are used for the soil surface boundary--no daily fluctuations are considered. Nitrogen Cycle The nitrogen cycle in the soil is very complex. Figure 6 shows those components considered. Inputs of nitrogen are assumed to be fertilizer, manure, plant residues, nitrogen fixation and rainfall. Micro- organisms in the soil convert the organic forms of nitrogen to ammonia and nitrate; the rate of conversion is a function of the soil moisture and temperature conditions. The nitrification of ammonia to nitrate is not considered as a separate process; it is incorporated in mineralization. Nitrate in soil solution is taken up by the plants, redistributed with the soil water, leached below the root zone into ground water, ( FIXATION 1 FERTILIZER MANURE -=C ADSORBED EROSION ADSORBED LAYER Figure 6 . EXTRACTED Nitrogen c y c l e on source a r e a s e x t r a c t e d from s u r f a c e s o i l l a y e r s by s u r f a c e r u n o f f , immobilized and d e n i t r i f i e d . Adsorption-desorption isotherms r e l a t e t h e s o l u b l e ammonia t o t h a t adsorbed on s o i l p a r t i c l e s . The adsorbed ammonia p l u s o t h e r sediment a s s o c i a t e d n i t r o g e n i s s u b j e c t t o e r o s i o n w i t h t h e s o i l . Expres- s i o n s f o r t h e n i t r o g e n c y c l i n g p r o c e s s e s a r e based on t h e Phoenix and EPIC models (McGill e t a l . , 1981 and Williams, 1982). Phosphorus Cycle The phosphorus p r o c e s s e s a r e shown i n F i g u r e 7 . I n p u t s c o n s i s t of p l a n t r e s i d u e s and f e r t i l i z e r o r manure i n t h e form of s o l u b l e phosphates. Within t h e s o i l , m i n e r a l i z a t i o n o f o r g a n i c forms t o t h e i n o r - g a n i c o r immobilization of i n o r g a n i c t o o r g a n i c a r e n o t c o n s i d e r e d . S o l u b l e PO i s s t r o n g l y adsorbed on s o i l p a r t i c l e s t h u s t h e s o i l can a c t 4 a s a scavenger. Phosphorus can be leached from t h e s o i l s u r f a c e , b u t is not considered t o move through t h e s o i l p r o f i l e e x c e p t i n c e r t a i n circumstances. The amount e x t r a c t e d from t h e s u r f a c e by runoff i s a f u n c t i o n of an e x t r a c t i o n c o e f f i c i e n t , t h e phosphorus c o n c e n t r a t i o n i n t h e s o i l s o l u t i o n and flow r a t e . Adsorbed PO removes t h e s o i l p a r t i c l e s . is subject t o l o s s a s erosion 4 P l a n t uptake i s a f u n c t i o n of demand. P e s t i c i d e Processes The movement of p e s t i c i d e s on s o u r c e areas is shown i n F i g u r e 8 . The method of a p p l i c a t i o n i s c o n s i d e r e d ; i t can be e i t h e r s u r f a c e a p p l i e d o r incorporated i n the s o i l . The amount of a s u r f a c e a p p l i e d p e s t i c i d e r e a c h i n g t h e s o i l s u r f a c e i s a f u n c t i o n of t h e canopy cover and, a f t e r r e a c h i n g t h e s o i l , i s t r e a t e d much t h e same way a s i n c o r p o r a t e d p e s t i cides. Decay r a t e s , a p p r o p r i a t e f o r t h e s p e c i f i c p e s t i c i d e s , a r e a p p l i e d t o c a l c u l a t e , from day t o day, t h e amount of t h e p e s t i c i d e remaining i n o r on t h e s o i l s u r f a c e . Appropriate adsorption/desorption isotherms a r e provided t o show what p a r t of t h e p e s t i c i d e i s adsorbed and what p a r t is i n solution. The s o l u b l e forms a r e r o u t e d w i t h t h e w a t e r through t h e s o i l zones o r e x t r a c t e d i n s u r f a c e r u n o f f . E x t r a c t i o n i s a f u n c t i o n of t h e c o n c e n t r a t i o n s i n an assumed mixing d e p t h , t h e flow r a t e and an extraction coefficient. with the s o i l particles. The adsorbed p e s t i c i d e s a r e s u b j e c t t o e r o s i o n r INPUT SOLUBLE P EXTRACTED - FORMS OF P EROSION SOLUBLE ADSORBED RANSPORTED Figure 7 . Phosphorus c y c l e on source a r e a s P ADSORBED PESTICIDES INCORPORATION AMOUNT AMOUNT PLANT AOSORBED FORMS n SOLUBLE MATERIALS RANSPO Figure 8 . I Pesticides on source areas ADSORBED MATERIALS 1 The amount of p e s t i c i d e t h a t r e a c h e s t h e p l a n t s u r f a c e i s s u b j e c t t o v o l i t a l i z a t i o n , d e g r a d a t i o n and wash-off. The amounts t h a t a r e v o l i t a - l i z e d o r degraded a r e a f u n c t i o n of t h e s p e c i f i c p e s t i c i d e . The amount t h a t i s washed o f f i s a f u n c t i o n of t h e c r o p t o which i t i s a p p l i e d and i t s a d s o r p t i o n i n t o t h e w a x on t h e p l a n t s u r f a c e . A mass b a l a n c e p l u s a decay f a c t o r i s used t o d e t e r m i n e t h e amount washed o f f . The f a t e of t h a t which washes o f f i s dependent upon t h e s i z e of t h e e v e n t and whether o r not t h e r e is s u r f a c e runoff. See t h e p r e v i o u s d i s c u s s i o n of p e s t i - c i d e s on t h e s o i l s u r f a c e . Timbered Areas The r a t e of movement of w a t e r , sediment and chemicals from timbered a r e a s w i l l b e handled by m o d i f i c a t i o n s i n parameter v a l u e s o f t h e equat i o n s o f flow, e r o s i o n and sediment t r a n s p o r t ; and changes i n t h e evapotranspiration subroutine. Changes i n t h e ET s u b r o u t i n e a l l o w t h e rela- t i v e c o n t r i b u t i o n s of s o i l s u r f a c e e v a p o r a t i o n and p l a n t t r a n s p i r a t i o n t o f o l l o w a n o n - l i n e a r rate a s a f u n c t i o n of l e a f - a r e a - i n d e x t i o n of a m a x i m u m LA1 of t h r e e . without r e s t r i c - The i n f l u e n c e of t h e f o r e s t f l o o r a s a d i f f u s i o n b a r r i e r t o s o i l e v a p o r a t i o n i s accounted f o r by m o d i f i c a t i o n of t h e s o i l - w a t e r t r a n s m i s s i o n and c r o p r e s i d u e - s o i l cover parameters. I n t e r c e p t i o n a l g o r i t h m s i d e n t i f y f o u r d i f f e r e n t v e g e t a t i v e t y p e s ; longl e a f e d c o n i f e r s , s h o r t - l e a f e d c o n i f e r s , mature hardwoods and mixed hardwoodpine. A d i f f e r e n t i n t e r c e p t i o n p a t t e r n i s d e f i n e d f o r each. CHANNEL, FESERVOIR AND GROUNDWATER PROCESSES The p r e v i o u s s e c t i o n s a r e a d e s c r i p t i o n of t h e s o u r c e a r e a r e s p o n s e , t h a t i s t h e c o r e of SWAM. The b a l a n c e of t h i s p r e s e n t a t i o n is a d e s c r i p - t i o n of t h e r o u t i n g of w a t e r , sediment and chemicals through t h e channel system; t h e groundwater flow; and t h e movement of w a t e r sediment and chemicals through r e s e r v o i r s . Routing Water and Sediments i n t h e Channel System Water: C h a r a c t e r i s t i c s of t h e channel t h a t a r e needed f o r r o u t i n g w a t e r through t h e channel system were d e s c r i b e d b r i e f l y i n t h e s e c t i o n of t h i s paper t h a t d e s c r i b e d t h e Watershed D e l i n e a t i o n and C l i m a t i c I n p u t s . Using t h e s e d e s c r i p t i o n s of t h e channel system and t h e hydrographs of a l l i n p u t s t o a g i v e n p o i n t (node) i n t h e channel system (upstream c h a n n e l , l a t e r a l i n f l o w s , r e s e r v o i r outflow, and groundwater), r o u t i n g t o t h e n e x t node i s shown i n F i g u r e 9. Within t h e channel, w a t e r can move e i t h e r i n t o o r o u t of t h e channel banks, channel l o s s e s a r e c a l c u l a t e d a s a f u n c t i o n of t h e channel p e r m e a b i l i t y . Out-of-bank flow i s s u b j e c t t o I n f i l t r a t e d water moves back i n t o t h e e v a p o r a t i o n and i n f i l t r a t i o n . channel, a f t e r t h e storm, a s groundwater o r i t goes i n t o deep s t o r a g e . I f t h e reach i s upstream from a r e s e r v o i r o r i n a backwater s i t u a t i o n , then s o l u t i o n of t h e flow e q u a t i o n s is based on t h e d i f f u s i v e wave approximation. I f t h e flow i s u n o s b t r u c t e d , s o l u t i o n i s based on t h e k i n e m a t i c wave approximation. Output from t h e r e a c h i s i n p u t t o t h e n e x t reach downstream. Sediment: The composition of sediment t r a n s p o r t e d through t h e channel r e a c h is dependent upon t h e c h a r a c t e r i s t i c s of t h e bed m a t e r i a l , t h e t r a n s p o r t e d l o a d , flow c o n d i t i o n s and channel c o n f i g u r a t i o n . P r o c e s s e s considered i n r o u t i n g sediments a r e shown i n Figure 10; they a r e based on t h e USDA Sedimentation Laboratory Model (Alonso e t a l , 1981). Residual t r a n s p o r t c a p a c i t y , which determines whether t h e channel reach w i l l agrade, degrade o r remain i n e q u i l i b r i u m is based on t h e c a r r y i n g c a p a c i t y of t h e flowing w a t e r , t h e sediment l o a d t h a t i t r e c e i v e s and t h e p a r t i c l e s i z e d i s t r i b u t i o n of t h e sediment l o a d . I f the sediment l o a d i s i n balance w i t h t h e c a r r y i n g c a p a c i t y , t h e l o a d p a s s e s through t h e r e a c h unchanged. t i o n w i l l occur. I f i t is g r e a t e r t h a n t h e c a p a c i t y , deposi- P a r t i c l e s a r e deposited, s t a r t i n g with the l a r g e s t s i z e f r a c t i o n , u n t i l t r a n s p o r t c a p a c i t y i s reached. Composition of t h e bed i s then determined and a new bed e l e v a t i o n e s t a b l i s h e d . I f t h e sediment l o a d is l e s s than t r a n s p o r t c a p a c i t y , e r o s i o n of t h e bed o c c u r s . The s m a l l e s t s i z e f r a c t i o n s a v a i l a b l e i n t h e bed a r e t h e n removed u n t i l t r a n s p o r t c a p a c i t y is achieved o r t h e remaining s u r f a c e l a y e r i s composed of m a t e r i a l too l a r g e t o b e t r a n s p o r t e d . T h i s t h e n becomes t h e armor l a y e r and t h e bed composition and e l e v a t i o n a r e determined. The sediment l o a d and i t s composition is t h e n passed on t o t h e n e x t reach. The Groundwater Component Groundwater movement i n t o t h e channel system is based on t h e flow l i n e o r s t r e a m t u b e concept. Low flow c o n d i t i o n s i n t h e watershed a r e used t o i d e n t i f y t h o s e reaches where groundwater e n t e r s t h e channel system. Groundwater w e l l s a r e used t o e s t a b l i s h t h e groundwater d i v i d e then r e p r e s e n t a t i v e flow p a t h s a r e drawn. DeCoursey, 1982 and I j o n g e t a l . 1981). See F i g u r e 11 (Liong and The flow p a t h s a r e t h e n grouped . GROUND WATER MAIN CHANNEL LATERAL INFLOWS i T 1 CHANNEL FLOW CHANNEL - / / / / / RESERVOIR OUTFLOW CHANNEL CHARACTERISTICS OVERBANK F L O W STORAGE ,I GROUNDWATER STCRAGE INPUT TO NEXT REACH F i g u r e 9. - GROUNDWATER DEEP STORAGE Stream flow r o u t i n g w i t h i n a channel r e a c h / CHANNEL FLOW RANSPORTED SEDIMENT LOAD / RESIDUAL :TRANSPORT CAPACITY BED - CHANNEL SEDIMENT SOURCES 0 a LOAD COMPOSITION COMPOSITION SEDIMEM TRANSPORTED F i g u r e 10. Sediment t r a n s p o r t w i t h i n a c h a n n e l r e a c h /GROUND WATER TYPICAL FLOW ------- PATHS OF GROUND WATER TO A CHANNEL ------ SYSTEM INTERCEPTING CROSS SECTION ALONG A FLOW PATH CONDUCTIVITY) ----- Figure 11. Groundwater processes into representative lengths for each of the channel reaches and the input calculated on a daily basis. Flow into the channel is a function of the saturated hydraulic conductivity, the porosity, the length of the flow path, the hydraulic head of the water surface elevation at the divide over water elevation in the channel, and the thickness of the aquifer at the channel. Both convergent and non-convergent flow are considered. A kinematic routing scheme moves water that passes below the root zone, through the unsaturated zone above the water table, to the water table. This raises the elevation of the groundwater, thus changing the flow rate and rate of groundwater flow recession. If a flow path crosses several fields or response areas, total flow, through the root zone from all fields is averaged across the entire length of the path to get a single weighted average increase in the water table level. Any chemicals, such as nitrate, that the percolating water may carry into the groundwater are assumed to be uniformly mixed with the groundwater below the field. These concentrations are mixed with inflowing water from gradient and down-gradient in the same way. This simplified approach to estimating the quantity and chemical concentrations of groundwater provides reach inputs that can be added to surface runoff and routed through the channel system. Reservoir Processes Reservoirs and small impoundments such as farm ponds probably have more impact on the quality of water in a channel system than any other structural or land use conservation practice. Therefore, this component of the model has received considerable attention. very simplified form in Figure 12. It is presented in a Given the following physical charact- eristics of the reservoir; initial temperature, suspended sediment, dissolved solids profiles; chemical structure; hydrologic and meteorologic data; morphometric data; inflow data; and outflow relationships--a series of subroutines calculates changes that take place in the temperature, suspended sediment and dissolved solids profiles. These subrou- tines take into consideration density currents that develop as inflow enters the reservoir (Dhamothran and Stefan, 1980). After changes in the profiles are calculated, chemical and biological process changes are simulated. Phosphorus processes include macrophyte and plankton uptake and decay and sediment sorption-desorption isotherms in both the epilimnion and hypolimnion. The sedimentation of detritus and effects of rooted macrophytes are also considered in the phosphorus structure. PHYSICAL CHPRPCTERISTICS INITIAL TEMP.. SUSP. SEDIMENT. DISSOLVED SOLIDS PROFILE CHEMICAL AND BIOLOGICAL STRVCTURE PROCESSES RESERVOIR WATER QUALITY Figure 12. Reservoir Processes A t t h e p r e s e n t time, t h e n i t r o g e n c y c l e i s handled i n a v e r y simple way t a k i n g i n t o c o n s i d e r a t i o n t h e o r g a n i c m a t t e r l e v e l and n i t r a t e concent r a t i o n i n t h e r e s e r v o i r a s compared t o t h e i n f l o w i n g w a t e r , t h e r e s i dence t i m e and temperature. The model w i l l be r e f i n e d , comparable t o t h a t of phosphorus, i n t h e n e a r f u t u r e . The p e s t i c i d e p r o c e s s e s simulated i n c l u d e a s o r p t i o n - d e s o r p t i o n i s o t h e r m b a l a n c e between t h e s o l u b l e f r a c t i o n and t h a t adsorbed on t h e suspended sediments i n both t h e e p i l i m n i o n and hypolimnion. Outflow from t h e r e s e r v o i r a t t h e end of each day ( i f t h e r e i s any) i n c l u d e s t h e suspended sediments and a s s o c i a t e d w a t e r q u a l i t y c o n s t i t u a n t s . v a l u e s a r e i n p u t t o t h e channel system downstream. These S u b r o u t i n e s provide a mechanism f o r c a l c u l a t i n g t h e t r a y e f f i c i e n c y of t h e sediments, n u t r i e n t s and p e s t i c i d e components of flow ( s e e F i g u r e 1 3 ) . Movement of Chemicals through t h e Channel System Nitrogen: The n i t r o g e n compounds of most concern i n channel flow a r e n i t r a t e s and sediment a s s o c i a t e d N ( s e e F i g u r e 1 4 ) . For p r a c t i c a l purposes, n i t r a t e s a r e n o t adsorbed, b u t move o n l y i n s o l u t i o n . The sediment a s s o c i a t e d N i s c o n s i d e r e d t o move p r i m a r i l y w i t h t h e o r g a n i c f r a c t i o n of t h e sediment. The NH4, which i s computed a s p a r t of t h e sediment a s s o c i a t e d N , i s m o s t l y adsorbed. An a l o g r i t h m f o r NH4 t r a n s - p o r t , determined by a p a r t i t i o n i n g c o e f f i c i e n t based on i o n exchange e q u i l i b r i u m i s b e i n g developed f o r t h o s e s p e c i a l s i t u a t i o n s where NH important. is 4 Because flow through t h e channel system is r e l a t i v e l y r a p i d , changes due t o N i n c o r p o r a t i o n , n i t r i f i c a t i o n o r d e n i t r i f i c a t i o n a r e assumed t o be i n s i g n i f i c a n t . I f . t r a v e l time through some channel systems i s s u f f i c i e n t l y long s o t h a t t h e s e p r o c e s s e s should b e c o n s i d e r e d , t h e r e s e r v o i r N c y c l i n g model could be i n c o r p o r a t e d . Outputs of t h e n i t r o g e n r o u t i n g p r o c e s s i n c l u d e t h e c o n c e n t r a t i o n s and masses of n i t r a t e i n s o l u t i o n and t h e sediment a s s o c i a t e d N . Phosphorus: The phosphorus o u t p u t from t h e s o u r c e a r e a s a r e s o l u b l e i n o r g a n i c PO4 and adsorbed PO4 ( s e e F i g u r e 1 5 ) . The o t h e r P f r a c t i o n s such a s s o l u b l e o r g a n i c , o r g a n i c m a t t e r o r m i n e r a l P forms a r e n o t modeled. E q u i l i b r i u m i s assumed between t h e s o l u b l e and adsorbed PO 4' These two f r a c t i o n s comprise roughly 20-40 p e r c e n t of t h e t o t a l P and a r e t h e most b i o l o g i c a l l y a c t i v e P f r a c t i o n s . t h e t e c h n i q u e used i s a mass b a l a n c e based on t h e E q u i l i b r i u m Phosphorus Concentration (EPC) p u b l i s h e d by Kunishi and T a y l o r , 1977; and Taylor and Kunishi, 1971. Merging flow . SOLUBLE PEST. IN FLOW SOLUBLE PEST. IN LATERAL FLOW SOLUBLE PEST. IN CHANNEL PEST. ON CHANNEL SEDIMENTS LATERAL SEDIMENTS SOLUBLE PEST. IN RESERVOIR OUTFLOW PEST. ON SEDl MENTS FROM RESERVOIRS LOSS IN FLOW TO PEST. DEPOSITED SOLUTION SEDIMENTS a PEST. TRANSPORT F i g u r e 13. P e s t i c i d e s movement w i t h i n a channel reach SEDIMENTS NO, IN LATERAL NO, IN CHANNEL FLOW Nl(r IN CHANNEL FLOW NO, IN G .w. FLOW N 8 NH4 I N CHANNEL SEDIMENTS N 8 NH4 ON RESERVOIR SEDIMENTS N 8 NH4 IN SEDIMENTS NO, IN RESERVOIR OUTFLOW N 8 NH4 NO, 1N SOLUTION DEPOSITED I / ' Figure 1 4 . TRANSPORTED Nitrogen movement w i t h i n a channel reach PO, IN LATERAL PO, IN CHANNEL FLOW PO, ON LATERAL SEDlMENTS PO, ON CHANNEL SEDIMENTS PO4 IN RESERWIR OUTFLOW -- PO, ON RESERVOIR SEDIMENTS PO4 IN DEPOSITED SOLUTION FLOW SEDIMENTS TOTAL TRANSPORTED Figure 15. Phosphorus movement within a channel reach SEO IMENTS o r sediments a r e each c h a r a c t e r i z e d by a l i n e a r b u f f e r curve which i s t h e n recomputed f o r t h e combined mass, minus t h a t PO transformed t o 4 u n a v a i l a b l e P forms ( f i x a t i o n ) . The d i r e c t l o s s of s o l u b l e PO i s com4 puted on t h e b a s i s of w a t e r l o s s t o groundwater r e c h a r g e . S o l u b l e PO4 s o u r c e s i n c l u d e f i e l d r u n o f f , groundwater and l a t e r i n f l o w . It can move i n t o t h e groundwater o r b e adsorbed on sediments d e p o s i t e d i n t h e channel. Adsorbed PO s o u r c e s a r e channel and l a t e r a l i n f l o w s from f i e l d s 4 and r e s i d u a l sediments i n t h e channel. PO f i x a t i o n i s computer a s a PO 4 4 loss. Carbon: The primary s o u r c e of carbon i s s o i l o r g a n i c m a t t e r and eroded o r g a n i c m a t t e r t r a n s p o r t e d i n t h e sediment phase. I t i s computed a s a mass b a l a n c e w i t h f i e l d i n f l o w s being t h e primary s o u r c e . Erosion and d e p o s i t i o n of carbon a s s o c i a t e d w i t h s t r e a m bottom sediments i s estimated (see Figure 16). Carbon i s r e q u i r e d a s i n p u t t o t h e r e s e r v o i r model and p e s t i c i d e a d s o r p t i o n c a l c u l a t i o n s . FUTURE EFFORTS Most of t h e s u b r o u t i n e s d e s c r i b e d i n t h e d i s c u s s i o n have been developed and t e s t e d and some of them have been combined. I n the n e a r f u t u r e a l l of them w i l l be assembled i n t o one l a r g e program and s e n s i t i v i t y a n a l y s e s and t e s t i n g begun. However, t h e r e a r e s e v e r a l a g r i c u l t u r a l p r a c t i c e s , a p p l i c a t i o n s , o r consequences t h a t have n o t been addressed. model. A s t i m e p e r m i t s , w e w i l l a t t e m p t t o i n c o r p o r a t e them i n t o t h e These i n c l u d e t i l e d r a i n a g e , i r r i g a t i o n , groundwater i n f l o w t o ponds o r r e s e r v o i r s , e r o s i o n from c o n c e n t r a t e d s o u r c e s such a s g u l l i e s , b a c t e r i a l and b i o l o g i c a l a c t i v i t y , p o i n t s o u r c e s of p o l l u t i o n , a complete t r e a t m e n t of temperature, adequate coverage of o r g a n i c m a t t e r decomposit i o n , n u t r i e n t l e a c h i n g and s u r f a c e e x t r a c t i o n of chemicals. After s e n s i t i v i t y a n a l y s e s , methods of a g g r e g a t i n g a r e a s w i l l b e deveioped and e f f o r t s t o develop a b a s i n s c a l e model begun. SOLUBLE CARBON SOLUBLE CARBON CARBON ON CHANNEL SEDIMENTS LATERAL CARBON ON LATERAL SEDIMENTS U SOLUBLE CARBON RESERVOIR OUT FLOW I CARBON IN CARBON ON SOLUTION SEDIMENTS u TRANSPORTED Figure 16. Carbon movement w i t h i n a channel r e a c h CARBON DEPOSrrED SEDIMENTS REFERENCES Alonso, C.V., D.K. Borah graded sediments in Stability, a report the U.S. Army Corps and S.N. Prasad. 1981. Numerical model for routing alluvial channels. Appendix J of Stream Channel prepared by the USDA Sedimentation Laboratory for of Engineers, Vicksburg District, 89 pp. Borah, D.K., C.V. Alonso and S.N. Prasad. 1981. Single event numerical model for routing water and sediment on small catchments. Appendix I of Stream Channel Stability, a report prepared by the USDA Sedimentation Laboratory for the U.S. Army Corps of Engineers, Vicksburg District, 112 pp. Corey, G.L., A.T. Corey and R.H. Brooks. 1965. Similitude for non-steady drainage of partially saturated soils. Colorado State University Hydrology Papers No. 9. 38 pp. Dhamothran, S., and H. Stefan. 1980. Mathematical model for temperature and turbidity stratification dynamics in shallow reservoirs. Amer. Soc. of Civil Engrs. Proc. of Symp. on Surface Water Impoundments, Minneapolis, Minnesota. Khanjani, M., and M. Molnau. 1982. Snowmelt runoff computations for CREAMS. ASAE Annual Summer Meeting, Madison, Wisconsin. Paper 82-2051. Knisel, Walter G. (editor) 1980. CREAMS: A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. U.S. Department of Agriculture, Conservation Research Report No. 26, 640 pp. Kunishi, H.M., and A.W. Taylor. 1977. Predicting pollution potential of phosphorus at heavy application rates. Proceedings of the International Seminar on Soil Environment and Fertility Management at Intensive Agriculture, Tokyo, Japan. pp. 349-356. Laliberte, G.E., A.T. Corey and R.H. Brooks. 1966. Properties of unsaturated porous media. Colorado State University Hydrology Papers No. 17. 40 pp. Liong, S. Y . , D. G. DeCoursey and E. H. Seely. 1981. Response f u n c t i o n s of s u b s u r f a c e flow. Proceedings I n t . Symp. on Rainfall-Runoff Modeling, Mississippi S t a t e University, Mississippi State, Mississippi. Liong, S.Y. and D.G. DeCoursey. 1982. Development of p r e d i c t i o n e q u a t i o n s f o r a p h r e a t i c a q u i f e r i n r e s p o n s e t o i n f i l t r a t i o n : dimensional a n a l y s i s . Water Resources B u l l e t i n , Amer. Water Resources Assoc. Vol. 1 8 , No. 2, pp. 307-310. McGill, W.B., e t a l . 1981. Phoenix, a model of t h e dynamics of c a r b o n and n i t r o g e n i n g r a s s l a n d s o i l s . T e r r e s t r i a l N i t r o g e n C y c l e s , C l a r k E. Rosswell, ed. Ecol. Bul. 33, pp. 49-115. Moore, I. D. 1981. I n f i l t r a t i o n e q u a t i o n s modified f o r s u r f a c e e f f e c t s . ASCE J o u r n a l of I r r i g a t i o n and Drainage, Vol. 107, No. I R I , pp. 71-86. Richardson, C.W. 1981. S t o c h a s t i c s i m u l a t i o n of d a i l y p r e c i p i t a t i o n , t e m p e r a t u r e . a n d s o l a r r a d i a t i o n . Water Resources Research, Vol. 17, No. 1, pp. 182-190. R i t c h i e , J.T. 1972. Model f o r p r e d i c t i n g e v a p o r a t i o n from a row c r o p w i t h incomplete c o v e r . Water Resources Research, Vol. 8 , No. 5 , pp. 1204-1213. Smith, R.E. 1976a. S i m u l a t i n g e r o s i o n dynamics w i t h a d e t e r m i n i s t i c d i s t r i b u t e d w a t e r s h e d model. Proc, of t h e T h i r d I n t e r Agency 1-173. S e d i m e n t a t i o n Conference, pp. 1-163 - Smith, R.E. 1976b. F i e l d t e s t of a d i s t r i b u t e d watershed e r o s i o n / s e d i m e n t a t i o n model. S o i l Erosion: P r e d i c t i o n and C o n t r o l , S o i l Cons. Soc. of Amer. pp. 201-209. Smith, R.E., and J . Y . P a r l a n g e . 1978. A p a r a m e t e r - e f f i c i e n t h y d r o l o g i c i n f i l t r a t i o n model. Water Resources Research, Vol. 1 4 , No. 3, pp. 533-538. Smith, R.E. 1981a. Mathematical s i m u l a t i o n of w a t e r and sediment flow p r o c e s s e s on t h e catchment s u r f a c e . The I n s t i t u t i o n of E n g i n e e r s , A u s t r a l i a . C i v i l E n g i n e e r i n g T r a n s a c t i o n s , 5 pp. Smith, R.E. 1981b. A k i n e m a t i c model f o r s u r f a c e mined sediment y i e l d . Trans. of t h e Amer. Soc. of Agr. Engrs. Vol. 24, No. 6, pp. 1508-1514. T a y l o r , A.W. and H.M. Kunishi. 1971. Phosphate e q u i l i b r i a on s t r e a m sediment and s o i l i n a watershed d r a i n i n g a n a g r i c u l t u r a l r e g i o n . A g r i c u l t u r a l and Food Chemistry, Vol. 1 9 , pp. 827-831. Williams, J . R . 1982. EPIC: A Model f o r A s s e s s i n g t h e E f f e c t s of E r o s i o n o n S o i l P r o d u c t i v i t y . T h i r d I n t . Conf. on State-of-the-Art i n E c o l o g i c a l Modeling. Colorado S t a t e U n i v e r s i t y , May 24-28.
© Copyright 2026 Paperzz