logarithm - Raging Bull Jobs

LOGARITHM
1. Which of the following statements is not correct?
A. log(2+4+6) = log 2 + log 4 + log 6
B. log51 = 0
C. log(3+4) = log(3 × 4)
D. D. log55 = 1
Answer : C
2. Log5(0) = ?
A. None of these
B. 5
C. 0
D. D. 1
Answer : A
3. log5√log5 = ?
A. 12
B. 15√
C. 14
D. D. 18
Answer : A
4. log6√log6√3 = ?
A. 13
B. 12
C. 32
D. D. 23
Answer : C
5. If logab+logba=log(a+b), then
A. a = b
B. a + b = 1
C. a - b = 1
D. D. a2 - b2 = 1
Answer : B
6. If log(64)= 1.806, log(16) = ?
A. 1.204
B. 0.903
C. 1.806
D. D. None of these
Answer : A
7. If log 2 = 0.3010 and log 3 = 0.4771, What is the value of log 51024?
A. 4.31
B. 3.88
C. 3.91
D. D. 2.97
Answer : A
8. if log 2 = 0.30103 and log 3 = 0.4771, find the number of digits in (648) 5.
A. 15
B. 14
C. 13
D. D. 12
Answer : A
9. if log 2 = 0.30103, the number of digits in 2128 is
A. 38
B. 39
C. 40
D. D. 41
Answer : B
10. logx(932)=−18, find the value of x
A. (932)8
B. (932)2
C. (329)8
D. D. (329)2
Answer : C
11. logx(94)=−12, find the value of x
A. 8116
B. 169
C. 1681
D. D. 916
Answer : C
12. if ax = by, then
A. logalogb=xy
B. None of these
C. logab=xy
D. D. logalogb=yx
Answer : D
13. log2 512 = ?
A. 10
B. 6
C. 9
D. D. 8
Answer : C
14. If logx y = 10 and log2 x = 1000, what is the value of y?
A. 2100
B. 21000
C. 210000
D. D. 210
Answer : C
15. if log102 = 0.3010, what is the value of log101600 ?
A. None of these
B. 5.204
C. 1.204
D. D. 3.204
Answer : D
16. 1log248+1log448+1log648 = ?
A. -1
B. 2
C. 0
D. D. 1
Answer : D
17. If log10 5 + log10 (5x + 1) = log10 (x + 5) + 1, then x is equal to:
A. 4
B. 3
C. 2
D. D. 1
Answer : B
18. If log102 = a, what is the value of log10(1200)
A. -(a+2)
B. -(a+1)
C. (a+2)
D. D. (a+1)
Answer : A
19. If log10 3 = 0.4771, then log3 10 is
A. 10004771
B. 100004771
C. 1.4313
D. D. 0.4771
Answer : B
20. If log5 (x2+x) - log5 (x+1) = 3, find the value of x
A. 25
B. 125
C. 1/125
D. D. 1/25
Answer : B
21. Find the value of13log10125−2log104+log1032
A. 0
B. 1
C. 2
D. D. 3
Answer : B
22. log(a2bc)+log(b2ac)+log(c2ab)= ?
A. None of these
B. abc
C. 1
D. D. 0
Answer : D
23. if log2x = -6, x is equal to :
A. 64
B. 164
C. 132
D. D. 32
Answer : B
24. If log4x+log2x=12, then x is equal to:
A. 1024
B. 256
C. 8
D. D. 16
Answer : B
25. log(.001) (100) = ?
A. −23
B. 32
C. −32
D. D. None of these
Answer : A
26. log5 200 × log200 125 equals :
A. 5
B. 25
C. 3
D. D. 6
Answer : C
27. If log100[log3(log2 x)] = 1, x is equal to:
A. None of these
B. 1
C. 2(3100)
D. D. 3(22)
Answer : C
28. If log2[log3(log2 x)] = 1, x is equal to:
A. 512
B. None of these
C. 256
D. D. 1024
Answer : A
29. (log3 4) (log4 5) (log5 6) (log6 7) (log7 8) (log8 9) (log9 9) = ?
A. 4
B. 0
C. 2
D. D. 1
Answer : C
30. log(-2)(-2) = ?
A. None of these
B. -1
C. 0
D. D. 1
Answer : A