Improper Integrals Rb Our definition of the definite integral a f (x)dx requires that [a, b] is a finite interval and that f has no infinite discontinuities on [a, b]. When the interval is infinite or f has an infinite discontinuity in [a, b], we are dealing with an improper integral. Infinite Intervals 1. We define ∞ Z t f (x)dx = lim f (x)dx t→∞ a a Rt if the limit exists. (Implicit Assumption: a f (x)dx exists for every number t ≥ a.) Z 2. We define b Z b Z f (x)dx = lim t→−∞ t −∞ if the limit exists. (Implicit Assumption: 3. We define Z ∞ Z f (x)dx = −∞ c Z f (x)dx + −∞ Rb t f (x)dx f (x)dx exists for every number t ≤ b.) ∞ Z f (x)dx = lim c if both limits exist for some number c. (Implicit all real numbers t.) c Z f (x)dx + lim t→−∞ −t Rt Assumption: c f (x)dx = t f (x)dx t→∞ c Rc − t f (x)dx exists for Remember: We say a limit exists if it is a finite number. An improper integral is called convergent if the corresponding limit exists; it is called divergent if the limit does not exist. Rc Remark. You can use any convenient number c in Case 3. This is because if −∞ f (x)dx and R∞ R c0 R∞ 0 c f (x)dx both exist for some number c, then, for any other number c , −∞ f (x)dx and c0 f (x)dx both exist and Z c Z ∞ Z c0 Z ∞ f (x)dx + f (x)dx = f (x)dx + f (x)dx. −∞ c −∞ ∞ Z c0 Remark. We did NOT define Z f (x) dx = lim −∞ t t→∞ −t f (x) dx Rt R∞ When it exists, limt→∞ −t f (x) dx is called the principal value of −∞ f (x)dx. It is possible for Rt R∞ limt→∞ −t f (x)dx to exist when −∞ f (x) dx does not (for example, take f (x) = x). However, R∞ Rc Rt if −∞ f (x)dx exists (that is, if limt→−∞ −t f (x) dx and limt→∞ c f (x) dx both exist for some R∞ Rt number c), then −∞ f (x) dx = limt→∞ −t f (x) dx. To reiterate, you CANNOT conclude that R∞ Rt −∞ f (x) dx exists by simply checking that limt→∞ −t f (x)dx exists. 1 2 Z ∞ 1 dx x Example 1. 1 Z t t 1 dx = ln |x| = ln |t| − ln |1| = ln t x 1 1 Since we will be letting t → ∞, we assume t > 0, so that ln |t| = ln t. Then Z lim t→∞ 1 ∞ 1 dx diverges. x Z ∞ Z Therefore 1 t 1 dx = lim ln t = ∞. t→∞ x 1 dx xp Example 2. 1 The case p = 1 is the previous example, so we assume p 6= 1. Z t t 1 1 1 1 −p+1 lim dx = lim x (t−p+1 − 1) = ( lim t−p+1 − 1) = lim p t→∞ 1 x t→∞ −p + 1 t→∞ −p + 1 −p + 1 t→∞ 1 If p > 1, then −p + 1 < 0, and so limt→∞ t−p+1 = 0. If p < 1, then −p + 1 < 0, and so limt→∞ t−p+1 = ∞. Therefore Z 1 1 1 − if p > 1 −p+1 dx = ( lim t − 1) = −p +1 p x −p + 1 t→∞ ∞ if p < 1 t lim t→∞ 1 p-Integral. Z ∞ 1 Z ∞ 1 dx is convergent if p > 1 and divergent if p ≤ 1. xp e−x dx Example 3. −∞ Z lim t t→∞ 0 Z 0 lim t→−∞ t Z ∞ Therefore −∞ t e−x dx = lim −e−x = lim (−e−t + 1) = −0 + 1 t→∞ t→∞ 0 0 e−x dx = lim −e−x = lim (−1 + e−t ) = ∞ e−x dx diverges. t→−∞ t t→−∞ 3 Z ∞ Example 4. 2 xe−x dx We first compute −∞ Z t 2 xe−x dx = − 0 1 2 Z −t2 eu du 0 u = −x2 du = −2x dx x=0⇒u=0 x = t ⇒ u = −t2 1 −t2 = − eu 2 0 1 2 = − (e−t − 1) 2 Therefore Z lim t→∞ 0 t 2 xe−x dx = − 1 1 1 2 lim (e−t − 1) = − (0 − 1) = . 2 t→∞ 2 2 With the same substitution, we find Z Z 0 1 u 0 1 1 0 u 2 −x2 e du = − e 2 = − (1 − e−t ) xe dx = − 2 2 2 −t 2 −t t and so Z 0 1 1 1 2 2 lim xe−x dx = − lim (1 − e−t ) = − (1 − 0) = − . t→−∞ t 2 t→−∞ 2 2 Z ∞ 2 Therefore xe−x dx converges and −∞ Z ∞ 2 xe−x dx = lim t→∞ 0 −∞ Z Z t 2 xe−x dx + lim Z t→−∞ t 0 2 xe−x dx = 1 1 − =0 2 2 ∞ sin θ dθ Example 5. 0 Z t t sin θ dθ = lim − cos θ = lim (− cos t + cos(0)) = −( lim cos t) + 1 t→∞ 0 t→∞ t→∞ t→∞ 0 Z ∞ The limit does not exist. Therefore sin θ dθ diverges. lim 0 4 Infinite Discontinuities Remember: f has an infinite discontinuity at c if limx→c+ f (x) = ±∞ or limx→c− f (x) = ±∞. Assume −∞ < a < b < ∞. 1. If limx→b− f (x) = ±∞, we define b Z Z t f (x)dx = lim t→b− a if this limit exists. (Implicit Assumption: Rt a a f (x)dx exists for every number t in [a, b).) 2. If limx→a+ f (x) = ±∞, then we define Z b Z b f (x)dx = lim f (x)dx t→a+ a if this limit exists. (Implicit Assumption: Rb t t f (x)dx exists for every number t in (a, b].) 3. If f has a infinite discontinuity at c, where a < c < b, then we define Z b Z c Z b Z t Z b f (x)dx = f (x)dx + f (x)dx = lim f (x)dx + lim f (x)dx a a t→c− c if both limits exist. (Implicit Assumption: Rb t f (x)dx exists for every number t in (c, b].) Rt a a t→c+ f (x)dx exists for every number t in [a, c) and Remark. The formulas above are actually valid for any type of discontinuity. Z 5 1 √ Example 6. dx x−2 2 1 = ∞. x−2 Z 5 1 1 √ √ dx = lim dx + t→2 x−2 x−2 t Z 5 = lim (x − 2)−1/2 dx t→2+ t 5 1/2 = lim 2(x − 2) t t→2+ √ √ = lim 2( 3 − t − 2) t→2+ √ =2 3 The integral is improper because lim √ x→2+ Z 2 So the integral is convergent. 5 t 5 Z Example 7. 0 3 1 dx x−1 1 The integral is improper because f (x) = x−1 has an infinite discontinuity in the interval [0, 3] at 1. We write Z 3 Z 1 Z 3 Z t Z 3 1 1 1 1 1 dx = dx + dx = lim dx + lim dx. − + t→1 t→1 0 x−1 0 x−1 1 x−1 0 x−1 t x−1 We have Z t t 1 lim dx = lim ln |x − 1| 0 t→1− 0 x − 1 t→1− = lim (ln |t − 1| − ln | − 1|) t→1− = lim ln(1 − t) t→1− = −∞ Z 3 1 + − dx is divergent. (We don’t need to evaluate because 1 − t → 0 as t → 1 . Therefore 0 x−1 Z 3 1 dx.) lim + t→1 t x−1 Z 3 1 dx is an improper integral, we might have incorWRONG WAY: If we had not noticed 0 x−1 rectly calculated that Z 3 3 1 dx = ln |x − 1| = ln 2 − ln 1 = ln 2. x − 1 0 0 Remark. Whenever you work with an integral definite integral or an improper integral. Z π/2 Example 8. sec x dx Rb a f (x)dx, you must check if it is an ordinary 0 The integral is improper because Z lim t→(π/2)− lim 1 = ∞. We have cos x t lim ln | sec x + tan x| − x→(π/2)− t sec x dx = sec x = lim x→(π/2)− 0 t→(π/2) 0 = = = lim (ln | sec t + tan t| − ln | sec 0 + tan 0|) lim (ln | sec t + tan t| − ln |1 + 0|) lim ln | sec t + tan t| t→(π/2)− t→(π/2)− t→(π/2)− =∞ because sec t → ∞ and tan t → ∞ as t → (π/2)− and ln x → ∞ as x → ∞. Z π/2 Therefore sec x dx diverges. 0
© Copyright 2026 Paperzz