Rossby Wave Propagation in the Tropics and Midlatitudes

Rossby Wave Propagation
in the Tropics and Midlatitudes
Kevin Mitchell, David Muraki
Department of Mathematics
Simon Fraser University
Burnaby, British Columbia
Kevin Mitchell, David Muraki
Rossby Wave Propagation
Midlatitudes & Tropics
N
midlatitudes
φ
tropics
midlatitudes
S
0.00
ū
0.25
midlatitudes: strong jetstream westerlies & strong Coriolis
tropics: weak tradewind easterlies & weak Coriolis
small Rossby # Ro → slow Rossby waves
Kevin Mitchell, David Muraki
Rossby Wave Propagation
Midlatitudes & Tropics
φ
N
S
0.00
ū
0.25
midlatitudes: strong jetstream westerlies & strong Coriolis
tropics: weak tradewind easterlies & weak Coriolis
small Rossby # Ro → slow Rossby waves
Kevin Mitchell, David Muraki
Rossby Wave Propagation
Three Regimes of Rossby Wave Theory
midlatitude (strong shear)
critical latitudes
no propagation through tropics
associated with non-linear absorption
(Dickinson 70 / Lindzen 71)
tropical (negligible shear)
equatorial β-plane (dry)
infinite # modes, all wavelength scales
(Matsuno 66)
global
long wavelength waves (planetary scale)
finite # of modes observed in climate data
(Madden 07)
how can these three perspectives be reconciled?
Kevin Mitchell, David Muraki
Rossby Wave Propagation
Rossby Waves in Rotating Shallow Water
2d wind ~u(λ, φ, t) & thin fluid layer height h(λ, φ, t)
momentum & mass equations
Ro2
D~u
− sin φ r̂ × ~u + ∇h = 0
Dt
Dh
+ h∇ · ~u = 0
Dt
disturbance wave modes ~u = ū(φ) + ûn (φ)ei(mλ−ωt)
linear eigenvalue problem for dispersion relation ω(m, n)
small Ro → slowest waves (small ω) are Rossby waves
Kevin Mitchell, David Muraki
Rossby Wave Propagation
Dispersion Relation (no tradewinds)
gravity
no tradewinds
discrete spectrum of wave
frequencies ω̄(m, n)
Kelvin
0
Rossby
slow Rossby waves
N
ū
Rossby-gravity
50
fast gravity waves
φ
ω̄
50
gravity
0
5
10
m
S
15
20
Kevin Mitchell, David Muraki
Rossby Wave Propagation
Dispersion Relation
gravity
no tradewinds
50
50
Kelvin
ω̄
Rossby
Rossby
N
ū
Rossby-gravity
50
N
ū
Rossby-gravity
50
gravity
gravity
0
continuous spectrum
Kelvin
0
φ
0
φ
ω̄
tradewinds
gravity
5
10
m
S
15
20
Kevin Mitchell, David Muraki
0
5
Rossby Wave Propagation
10
m
S
15
20
Dispersion Relation (with tradewinds)
tradewinds
gravity
same discrete mode structure
ω̄
50
continuous spectrum
Kelvin
0
Rossby
added continuous spectrum
N
ū
Rossby-gravity
φ
50
gravity
0
Kevin Mitchell, David Muraki
5
Rossby Wave Propagation
10
m
S
15
20
Dispersion Relation (with tradewinds)
tradewinds
same discrete mode structure
ω̄
50
0
added continuous spectrum
50
0
Kevin Mitchell, David Muraki
5
Rossby Wave Propagation
10
m
15
20
Summary of Rossby Wave Modes
ω̄
5
0
5
10
0
n =2
5
n =1
10
n =0
m
15
discrete Rossby modes - (infinite # like β-plane)
global longwave modes
longest wavelength discrete modes
observed (Madden 2007) & computed (Kasahara 1980)
tropical shortwave modes
very shortwave in tropics, but longwave in midlatitudes
negligible north-south group velocity in the tropics
continuous Rossby spectrum
critical latitudes (no waves in the tropics)
analogue of midlatitude waves
Kevin Mitchell, David Muraki
Rossby Wave Propagation
20
Summary of Rossby Wave Modes
ω̄
5
0
5
10
0
n =2
5
n =1
10
n =0
m
15
discrete Rossby modes - (infinite # like β-plane)
global longwave modes
longest wavelength discrete modes
observed (Madden 2007) & computed (Kasahara 1980)
tropical shortwave modes
very shortwave in tropics, but longwave in midlatitudes
negligible north-south group velocity in the tropics
continuous Rossby spectrum
critical latitudes (no waves in the tropics)
analogue of midlatitude waves
Kevin Mitchell, David Muraki
Rossby Wave Propagation
20
Discrete Rossby Mode Latitude Structure (m = 6)
global
tropical
û(φ)
n =25
û(φ)
n =6
S
φ
N
S
φ
global planetary-scale waves
tropical shortwave latitude dependent wavelength
Kevin Mitchell, David Muraki
Rossby Wave Propagation
N
Discrete Rossby Mode Latitude Structure (m = 6)
tropical
û(φ)
û(φ)
n =25
S
φ
S
N
φ
N
n =25
û(φ)
n =6
û(φ)
no tradewinds
tradewinds
global
n =6
S
φ
N
S
φ
global planetary-scale waves
tropical shortwave latitude dependent wavelength
Kevin Mitchell, David Muraki
Rossby Wave Propagation
N
Discrete Rossby Mode Latitude Structure (m = 6)
global
tropical
û(φ)
n =25
û(φ)
n =6
102
n →∞
101
100
10-1 S
n =6
φ
S
N
φ
N
local wavenumber
local wavenumber
S
N
φ
102
n →∞
101
100
10-1 S
n =25
φ
midlatitude maximum wavenumber
unbounded wavenumber at equator
Kevin Mitchell, David Muraki
Rossby Wave Propagation
N
Continuous Rossby Mode Latitude Structure (m = 6)
continuous spectrum
tropical
û(φ)
û(φ)
n =25
φ
102
101
100
10-1 S
φ
S
N
N
local wavenumber
local wavenumber
S
N
φ
102
n →∞
101
100
10-1 S
n =25
φ
N
exceed discrete spectrum maximum wavenumber
critical latitudes: wave speed matches background flow
Kevin Mitchell, David Muraki
Rossby Wave Propagation
Wave Packet Dynamics
û(φ)
S
0
180
N
t =0
S
û(φ)
N
360
λ
ū
φ
φ
tropical
N
S
0
180
N
t =0
360
λ
critical latitude
ū
φ
φ
continuous
ū
φ
S
t =0
N
φ
global
N
S
û(φ)
S
0
180
λ
Kevin Mitchell, David Muraki
360
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
1.6
1.2
0.8
0.4
0.0
0.4
0.8
1.2
1.6
circular mask
northern hemisphere
southward group velocity
3.2
2.4
1.6
0.8
0.0
0.8
1.6
2.4
3.2
Rossby Wave Propagation
Conclusion: Three Rossby Wave Behaviours
û(φ)
S
0
180
N
t =9.74145
S
û(φ)
N
360
λ
ū
φ
φ
tropical
N
S
0
180
N
t =19.9112
360
λ
critical latitude
ū
φ
φ
continuous
ū
φ
S
t =3.14183
N
φ
global
N
S
û(φ)
S
0
180
λ
Kevin Mitchell, David Muraki
360
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
1.6
1.2
0.8
0.4
0.0
0.4
0.8
1.2
1.6
3.2
2.4
1.6
0.8
0.0
0.8
1.6
2.4
3.2
planetary scale
pass through tropics
shortwave in tropics
longwave in midlat.
very slow in tropics
critical latitudes
small scale midlat.
cannot enter tropics
Rossby Wave Propagation
Linear eigenvalue problem
Ro2 ∂
m
(cos φ u) v̂ + Ro
η̂,
Ro ω̄û =
sin φ −
cos φ ∂φ
cos φ
∂ η̂
Ro2 ω̄v̂ = sin φ + Ro2 2 tan φ u û + Ro ,
∂φ
m
Ro
∂
Ro2 ω̄ η̂ = Ro
hû −
(cos φ hv̂),
cos φ
cos φ ∂φ
2
reduced frequency
ω̄(φ) = ω − m
Kevin Mitchell, David Muraki
u
cos φ
Rossby Wave Propagation
Methods
Numerical
spectral eigenvalue computation on sphere
careful convergence analysis
de-singularised equations for continuous spectrum
WKB/Geometric Optics as Ro → 0
zonal flow with fast phase, slow amplitude perturbation
~ (φ)ei(mλ+ρ(φ)−ωt)/Ro
~u = u(φ) + U
latitude phase ρ(φ) satisfies Ro-independent eikonal ODE
m
m
sin2 φ
m2
sin φ
2
ω−
+
u
+
ρ
+
h
=0
φ
cos φ
cos2 φ
cos φ
h
h
φ
. . . midlatitude replacements . . .
m
→m
cos φ
ρφ → `
sin2 φ
→ f2
h
h
sin φ
h
→β
φ
. . . gives Rossby dispersion relation (Hoskins, Karoly 1981)
ω = mu −
mβ
m2 + `2 + f 2
~ (φ) amplitude functions are also determined
the U
Kevin Mitchell, David Muraki
Rossby Wave Propagation
zerocrossings of û(φ)
no tradewinds
tradewinds
20
20
15
15
n
25
n
25
10
10
5
5
0
−π/2
0
0
φ
π/2
Kevin Mitchell, David Muraki
−π/2
0
φ
Rossby Wave Propagation
π/2
Eigenvalues for fixed m
−ω̄
101
100
10-1
10-2
10-3
10-4
10-5
10-6
10-7 0
no tradewinds
Nφ =16
Nφ =32
no tradwinds
Nφ =64
tradewinds
Nφ =512
Nφ =1024
Nφ =2048
10
20
n
30
algebraic decay with n
doubling resolution
doubles number of
converged solutions
tradewinds
40
50
Kevin Mitchell, David Muraki
exponential decay with n
doubling resolution
increases converged
solution by 4
Rossby Wave Propagation