METALLURGICAL STUDY RPT

P. G.
LACO~
INGENII
II n1I111f~U lilli" mll"m~ "I
31EllNE0014 2.3509 BUTT
"------ ---------------~---
Metallur,ical
Metallurgical Study
Stuiiy
. Gr2~hite
Graphite Concentration
CcbncentsaSion and
and recovery
recovery
McGuire
Lake
Deposit,
Ont.
EdcGuire Lake De-posit, Ont,
.
~.•
:: P.G.Lac
••be &"
P .G.Laceabe
& Ass.ciates
Asseciates
Minin~
Mining Engineers
Engineers
May
May 30,
30, 1980.
1980.
010
McGill
University
Department of
o f Mining
Mln~ng&
& Metallurgical
Metallc~rgicalEngineering
Eng~neering
Frank [)awson
Dawson Adams
Adams Building
Building Telephone (514)
(514) 392-5706
392-5706 Telex
Tclex 05-263-51C
0'3-268-51(
Frank
May 22, 1980
1980
Mr.
M r . P.G.
P.G. Lacqmbe
Lacombe
P.G.
P.G. Lacombe
Lacombe &
& Associes
AssociGs
Box 95
95
Beloeil
Beloe.il
Quebec
Quebec
Dear Pierre:
Pierre:
Thank you very
a s s i s t a n c e during
d u r i n g the
t h e project
project
v e r y much for
f o r your assistance
undertaken by D. Mingie.
I
am
enclosing
her
report;
I
think
Flingie.
a m e n c l o s i n g h c r r e p o r t ; I t h i n k her
her
conclusions are
p.13.
a r e quite
q u i t e clear
c l e a r and succinct,
s u c c i n c t , particularly
p a r t i c u l a r l y on p.13.
We
W
e attempted
attempted to
t o maximize +100
4-100 mesh production at
a t >85%
>85% grade
g r a d e and
giving
80%-35
mesh
and
an
8
minute
found aa 4 minute grind
flotation
g r i n d g i v i n g 80%-35
8 minute flotation
gave
this.
gave t h i s .
II am
am
also
a l s o enclosing
e n c l o s i n g the
t h e references
r e f e r e n c e s you provided.
provided.
II hope
hope you find
f i n d the
t h e results
r e s u l t s useful..
u s e f u l . It
I t definitely
d e f i n i t e l y appears
appears the
the
head grade
3% which is
grade is
is .....
-3%
i s probably the
t h e most important point
point. from
from
the
t h e economics
economics point-of-view.
point-of-view.
Ii.-I
Yours'
Yours' sincerely,
sincerely,
Ii
.'
#
1
,
.
t,.
. I ~.
5.' , (\II-
~,.'
,
/I
J,ames A.
A.
,IGames
I
JAF/kdr
Encl.
Encl
Finch
Professor
Professor,
Associate
I~ssociate
~'
J
'
.
Postal address:
address: 3450
3450 University
U n i v e r s i t y Street,
S t r c e t , Montreal,
Montreal, PO,
PQ, Can<lcla
Canacla H3A
H3A 2A7
2A7
Postal
PROCESSING A
A GRAPHITE
GRAPHITE ORE
ORE
PROCESSING
Donna Mingie
Mingie
Donna
Mineral
Mineral
Course#
Course#
Separation Project
Project
Separation
3
0
6
4
4
3
~
J06-44JB
A p r i l 1'980
1'980.
April
•
.
,
IIIIIIIIIIIIIIIIIIIIIIIUIII ~~
3IElINE0014 ;~.3509
2.3509 BUTT
BUTT
:31EllNE0014
Table of
o f Contents
Contents
Table
Abstract
'
Introduction
Introduction
I
I
. page
i
t
Theory:
Theory:
Grade
and Recovery for
for
Grade and
Times
D i f f e r e n t Grinding
G r i n d i n g Times
Different
2
and Cumulative
Cumulative
G r i n d i n g and
Grinding
R a t e of
o f Breakage
Rate
4
Experimental
E x p e r i m e n t a l Procedure
Procedure
5
Results
Results
6
o f Results~
Results:,
D i s c u s s i o n of
Discussion
G r i n d i n g Times
Times
Grinding
F l o t a t i o n Times
Times
Flotation
7
E f f e c t of
o f Flotation
Flotation
Effect
Environment
8
9
P r e s e r v a t i o n of
o f +100m
+loom
Preservation
Material
Material
10
G r i n d i n g Kinetics
Kinetics
Grinding
11
Conclusions
Conclusions
12
References
·14
1: Tables
T a b l e s of
o f Results
Results
Appendix 1:
Z t Graphical
G r a p h i c a l Results
Results
Appendix 2:
010C
Abstract.
Graphite,
G r a p h i t e , found
f o u n d naturally
n a t u r a l l y as
a s disseminated
d i s s e n i n a t e d flakes
f l a k e s of
o f carbon,
carbon,
has
has many
tnany uses;
u s e s ; such
s u c h as
as in
i n Dencil
p e n c i l manufacture,
m a n u f a c t u r e , for
f o r foundry
f o u n d r y facings
facings
for
f o r crucib-le
c r u c i b - l e manufacture
m a n u f a c t u r e and
a n d as
as aa lubricanto
lubricant.
The
The greatest
g r e a t e s t demand
demimd
f6r
f o r it
i t is
i s in
i n its
i t s largest
l a r g e s t flake
f l a k e form,
f o r m , the
t h e market
m a r k e t for
f o r which
w h i c h requires
requires
a
c:onstant
c o n s t a n t and
a n d high
h i g h grade.
grade.
Graphite
G r a p h i t e are
o r e is
i s typically
t y p i c a l l y treated
t r e a t e d by
by
flotation
d u r i n g the
t h e roughing
r o u g h i n g stage,
s t a g e , and
a n d consequently
consequen-t;ly cleaned
c l e a n e d by
l~y
f l o La Lion during
either
e i t h e r flotation
f l o t a t i o n or
o r tabling.
tabling.
The
The purpose
p u r p o s e of
o f this
t h i s projecttwas
p r 0 j e c t : w a s to
t o concentrate
c o n c e n t r a t e aa ~rauhite
graohite
are
o r e to
t o 85%
85% C,
C, maintaining
m a i n t a i n i n g the
t h e maximum
maximum amount
amount of
of +100
+ I 0 0 mesh
mesh grauhiteo
graohite.
This
T h i s was
was to
t o be
b e done
d o n e using
u s i n g aa series
s e r i e s of
of grind
g r i n d tests
t e s t s and
and float
f l o a t tests
tests
(making
( m a k i n g use
u s e of
o f the
t h e naturally
n a t u r a l l y dewettable
d e w e t t a b l e characteristics
c h a r a c t e r i s t i c s of
o f graphite),
graphite),
to
t o find
f i n d . optimum
optimum operating
o p e r a t i n g conditionso
conditions.
III
I
I~
i
Ii :,
I
t h a t 18 8minutes
m i n u t e s of
o f flotation
f l o t a t i o n using
u s i n g uine
p i n e oil
oil
R e s u l t s indicated
i n d i c a t e d that'
Results
as sole
s o l e reagent,
r e a g e n t , on
on material
m a t e r i a l ground
g r o u n d to
t o 80%
80% passing
passing
as
!
35 mesh,
mesh,
35
maximized
maximized
+ I 0 0 mesh
mesh graphite
g r a p h i t e producing
p r o d u c i n g aa concentrate
c o n c e n t r a t e assaying
a s s a y i n g 85%Co
85%
p r o d u c t i o n of
o f +100
production
Use of
o f fuel
f u e l oi.l
o i l as
a s well
w e l l as
as pine
p i n e oil,
o i l , increased
i n c r e a s e d recovery
r e c o v e r y but
b u t d~creased'
decreased.
Use
g r a d e significantly,
s i g n i f i c a n t l y , thus
t h u s producing
p r o d u c i n g cleaner
c l e a n e r feed
f e e d aatit !.50%
50% C.
C.
grade
The
ThE~
c l e a n i n g stage
s t a g e was
w a s hot
n o t investigated
i n v e s t i g a t e d for
f o r the
t h e purpose
p u r p o s e of
of this
t h i s re~)orto
reporta
cleaning
II
I'I
~ 1~
I1
I11 ;
II
I
i
!
In1:roduction
Gra~hite,
Gra~hite
,aa black
b l a c k lustrous
l u s t r o u s min~ral
m i n e r a l 1S
i s found
found eitheF
e i t h e r as
a s flakes,
flakes,
fibres
a m o r ~ h o u smicrocryst~lline
m i c r o c r y s t h l l i n e particles.
particles.
f i b r e s or
o r amornhous
aa lamellar
l a m e l l a r form
form found
found in
i n metamorphic
metamorphic rock.
rock.
Flake
F l a k e gFaphite
g r a p h i t e is
is
Each
Each flake
f l a k e i~
i s se~arate
separate
having
having crystallized
c r y s t a l l i z e d as
as such
s u c h in
i n the
t h e rock,
r o c k , and
and has
h a s nerfect
~ e r f e c cleavage.
tc l e a v a g e
along
along the
t h e basal
b a s a l olane
lane of
o f its
i t s hexagonal
h e x a g o n a l struc.ture"
structure,
From
From aa milling
milling
standooint,
s t a n d o o i n t , the
t h e character
c h a r a c t e r of
o f the
t h e flake-is
f l a k e b i s very
v e r y imnortant,
i m ~ o r t a n t ,narticularly
~articularly
in
i n regards
r e g a r d s to
t o grade.
grade,
Ores
Ores may
may be
be difficult
d i f f i c u l t to
t o upgrade
upgrade sufficiently
sufficiently
~-
due
d u e to
t o the
t h e tendency
t e n d e n c y for
f o r silica
s i l i c a to
t o be
b e trapped
t r a p p e d between
between the
t h e laminae
laminae
of
o f gra~hite
g r a p h i t e flakeso
flakes
Although
i s aa common
c o m o n consti
c o n s t i tuent
t u e n t of
o f prec2'Jnbrien
precembrien
Although graphite
g r a p h i t e flake
f l a k e is
3
rock,
and size
size
t h e quality
q u a l i t y and
r o c k , and
and thus
t h u s Canada
Canada has
h a s many
many such
s u c h deposits~
d e p o s i t s , the
of
o f the
t h e flake
flake det,e:vmines
d e t e c m i n e s the
t h e . suitability
s u i t a b i l i t y of
of the
t h e orebody
orebody for
f o r graphite
graphite
production.
production.
The
i n this
t h i s report
r e p o r t ,, assaying
assaying
The ore
o r e treated
t r e a t e d in
3%
3$
C,
C , is
i s from
from
aa newly
newly discovered
d i s c o v e r e d graphite
g r a p h i t e deposit
d e p o s i t near
n e a r the
t h e Quebec:...Ontario
Quebec-Ontario border"
border,
g r a ~ h i t evary
v a r y depending
d e p e n d i n g on
on flake
f l a k e quality
q u a l i t y and
and size.
size.
The uses
u s e s of
o f granhite
The
Because
o f the
t h e rarity
r a r i t y of
o f good
good qu~lity
q u a l i t y large
l a r g e flake,
f l a k e , the
t h e value
v a l u e of'
of,
Because of
+I00 mesh
mesh graphite
g r a p h i t e is
is
+100
graphite,
graphite"
t h r e e tb
t b four
f o u r times
t i m e s that
t h a t of
of the
t h e finer
f i n e r size
size
three
+lGGr-rs graphite
g r a p h i t e flakes
f l a k e s are
a r e in
in
The imnortant
i m p o r t a n t uses
u s e s of
o f the
t h e fIOC'C'1),
The
c r u c i b l e manufacture
m a n u f a c t u r e (where
(where the
t h e flakes
f l a k e s act
a c t tp
t o bond
bond the
t h e crucible),
crucible),
crucible
r e f r a c t b r i e s(for
( f o r imparting
i m p a r t i n g non-wetting
n o n - w e t t i n g characteristics
c h a r a c t e r i s t i c s ,'{hen
iuhen the
the
refractbries
r e f r a c - t b r y comes
comes in
i n contact
c o n - t a c t with
w i t h molten
m o l t e n metal)
m e t a l ) and
and as
as aa lubricant
lubr5cant
refractbry
11
(due
( d u e to
t o the
t h e soapy
s o a p y nature
n a t u r e of
o f graphite).
graphite),
..;
,
,.
In
I n tthis
h i s type
t y p e of ex-periment
e x p e r i m e n t where
i v h e r c grade,
g r a d e , .recovery
r e c o v e r y and size'"'
s i z e . are
arf
I.
ii nortant
p o r t a n t factors.
f a c t o r s , grind
g r i n d times
t i m e s and kinetics,
k i n e t i c s , aswell
as w e l l as
a s flotation
fl-otation
times
t i m e s and conditions
c o n d i t i o n s will
w i l l be of
o f importance.
importance.
Crade and
and RQcovGr
I\saovel*,y for
for. Different
D i f f e r e n t Grind
Grind Times.
Times.
As
A s aa uarticular
articular ore
o r e is
i s ground succes?ively
s u c c e s s i v e l y finer,
f i n e r , the
t h e overall
overall
C
r covery
c o v e r y by
b'y flotation
f l o t a t i o n can
can be expected
e x ~ e c t e dto
t o increase
i n c r e a s e since
s i n c e more uarticles
~artlcles
will
bee exuected
c a n also
also b
exoected
' f l o a t a b l e ' size
size rangeo
raneeo Grade Can
w i l l f'all
f a l l into
i n t o the
t h e 'floatable'
to increase
particles
becume liberated:
i n c r e a s e as
a s floatable
floatable p
a r t i c l e s became
l i b e r a t e d : from locked
locked
gangue material.
material..
'l'ypical
would b
bee those
<... t.J. (.
*-3
T y p i c a l curves
c u r v e s woGld
t h o s e shown below:
belowr t.,
t.,4t2
<tJ
I '.:~,•'.
grade
grade
rec.
rec.
~
,(
.
"
recovery
recovery
fio'tation
f 3 o ' t ; a t i o n time
Fig.l
Similar
plots
Similar p
l o t s would also
a l s o be expected
e x p e c t e d whEm
when considering
c o n s i d e r i n g +100
+;LOO mesh
material
m a t e r i a l only.
only.
Since w
a r e interested
i n t e r e s t e d in
i n ppreserving
r e s e r v i n g +100
+ I 0 0 mesh material
m a t e r i a l however,
Since
wee are
a b
bettE!r
e t . t e r way of
o f ex'amining
examining the
t h e results
r e s u l t s would be to
t o tack on a factor
factor
ttb
b incornorated
i n c o r o o r a t e d the
t h e amount of
o f material
m a t e r i a l at
a t this
t h i s size
s i z e fraction
f r a c t i o n tr.lat
that
is
present
multiply
is p
r e s e n t after
a f t e r each amount of
o f grindingl.eg
grindingo,eg m
u l t i p l y the
t h e recovery
r e c o v e r y by
•
t h e fraction
f r a c t i o n of
o f +100
+I00 mesh material.
m a t e r i a l . What
I d h a t this
this w
i l l tthen
h e n indicate is
is
the
will
tthe
h e actual advant~ge
a d v a n t h e e gained
gained
f u r t h e r grinding,
g r i n d i n g , in
i n terms of
o f improveimproveby further
?
I
I
For
may be
be obtained
For aa series
s e r i e s of
of grind
g r i n d times,
t i m e s , figl-4
Iigl-I-: may
o b t a i n e d using
using
I
~cessive
s
f' oat
o a t time.
time,
float
f l o a t times,
t i m e s , while
w h i l e fig
fig
!
5 may be found using
u s i n g one constant
constant
This
T h i s latter
l a t t e r method facilitates
f a c i l i t a t e s the
t h e finding
f i n d i n g of
o f the
t h e optimum
i
I
g ind
i n d in
i n tthat
h a t tthe
h e peak can
c a n be readily
r e a d i l y interpolated
i n t e r p o l a b e d from test
t e s t rE~sul
r f i s u lts
ts
04 either
e i t h e r side
side
o
of
o f the
t h e peak.
peak.
The former
f o r m e r method might rrequire
e q u i r e mOre
more
t sts to isolate the
t h e exact
e x a c t curve
c u r v e corresponding
c o r r e s p o n d i n g to
t o the
t h e optimum
optimum,o
ese curves however also
s u c h as flotation
flotation
a l s o give
g i v e other
o t h e r information
i n f o r m a t i o n such
t'me necessary to maintain aa specific
s p e c i f i c grade
g r a d e etb~.o
etk,.,
dind din^
G
I
I
and Cumulative Size
e.
S i z e Rate
RaLe of
o f Dreaka
Breakage.
.' If grinding
g r i n d i n g is
i s deemed to
t o follow
f o l l o w firstf i r s t - order
o r d e r kinetics,
k i n e t i c s , then
tb.en
3
e following
f o l l o w i n g equations
e q u a t i o n s describe
d e s c r i b e tthe
h e mineral
m i n e r a l grinding?
grinding8
=
R(d,t)
R ( d , t ) = R(d,O)
R ( ~ , o )exp(-kt)
exp(-kt)
1
where R(d,t)=cumomass
R(d,t)=cum,mass fraction
f r a c t i o n coarser
c o a r s e r tthen
hen
size
.
s i z e d at
a t time
t i m e to
to
·k
=cumulativ~
#.k=
c u m u l a t i v e size
s i z e rrate
a t e of
of breakage
breakage
k and xx have been found to
t o be related
r e l a t e d by aa power law;
law:
I
where C
C and n are
a r e constantso
constantso
I
I
These above
a b o v e equations
e q u a t i o n s refer
r e f e r to
t o overall'mineral
o v e r a l l m i n e r a l grinding,
grinding,
I
I
however similar
s i m i l a r sets
s e t s of
o f equations
e q u a t i o n s may be used to
t o describe
d e s c r i b e the
the
kinetics
p~rticular
present.
k i n e t i c s of
of any
any p
a r t i c u l a r mineral
mineral p
resent.
I
I
Lineari
L i n e a r i ty
t y of
of Ln R
~ (dJJ_
( td
R{d,OT
&
vs
v s tt confirms
c o n f i r m s first
f i r s t order
o r d e r hypothesis.
hypothesis.
.Laboratbry k
i n e t i c s for
f o r coarser
c o a r s e r mesh sizes
s i z e s may d
e v i a t e from tthe
he
,Laboratbry
kinetics
deviat~
indicating b
r e a k a g e rate
r a t e decreases
d e c r e a s e s with
w i t h time.
time.
linear ,, indicating
breakage
.
hysical
The p
physical
significance
s i g n i f i c a n c e of
o f tthis
h i s iis
s that,
t h a t , as
a s softer
s o f t e r comDonents
c o m ~ o n e n t sdisapDear,
d i s a p ~ e a r ,the
,t h e
p r o p o r t i o n of harder
h a r d e r components
a t these
t h e s e size
s i z e fractions
f r a c t i o n s in6reases!
increases.
proportion
co~pon~nts at
-3
Compzrison of
o f corresDor.ding
c o r r e s ~ o n d i n gvaues
v a u e s of
bf k for
f o r aa p
a r t i c u l a r mineral
mineral
Comparison
particular
4
1
I
an
arl
t
the
breakage
-Lhe overall
o v e r a l l material,
m a - t e r - i a l, will
w i l l indicate
i n d i c t~e ~relative
re1.a t.ive b
r e a k a g e rates.
rates.
De ermination
e r m i n a t i o n of
o f n will
nwi1.l indicate
i n d i c a t e how ,dependant
d e p e n d a n t k 1S
i s on the
t h e size
s i z e of
of
th' uarticle.
particle.
th
th
e
If grauhite
break
g r a ~ h i t ewere found to
to b
r e a k less
l e s s easily
e a s i l y then
then
overall
prove
o v e r a l l ore,
o r e , tth~ngrinding
h e n g r i n d i n g and screening
s c r e e n i n g alone
a l o n e might
might p
r o v e to
t o be
aa e oncentraing
o n c e n t r a i n g stage.
stage.
If
break
viere found to
to b
r e a k more readily
readily
I f graphite
g r a p h i t e were
th n the
t h e are,
o r e , then
t h e n in
i n fac't
f a c t additional
a d d i t i o n a l care
c a r e need be taken
t a k e n to
t o ensure
ensure
milimal b
breakage
r e a k a g e of
o f +100
+ I 0 0 mesh graphite.
graphite,
Ex
~ x berimental
e r i m e n t a lProcedure
Procedure
II
The entire
-~in
e n t i r e sample of
o f ore
o r e (approx
( a p p r o x JOOlbs)
3001bs) was
w a s crushed
c r u s h e d to
t o -*in
using
u s i n g a jaw crusher.
crusher,
The sample was riffled
r i f f l e d down to
t o aa manageable
size
packaged
s i z e and
and p
a c k a g e d into
i n t o 600
600 gg samples.
samples.
This
vee riffling
T h i s exten,si
extensiv
r i f f l i n g 'orocedure
.procedure
was done to
being
t o ensure
e n s u r e uniformity
u n i f o r m i t y of
o f th~
the. samnles,
s a m n l e s , each
each b
e i n g representative
represlentative
of
or~
of the
t h e original
original o
r e ,•..
A se'ries
s e r i e s of
o f float
f l o a t tests
t e s t s were done to
t o evaluate
e v a l u a t e optimum grinding
grinding
A
. ttimes~
imeso
All
using
A l l float
f l o a t tests
t e s t s were done at
a t 20%
20% solids
solids u
s i n g 01
.1 Ib/ton
lb/ton
pine
p
i n e oil
o i l unless
u n l e s s otherwise
o t h e r w i s e specified.
specified.
--.
A
A '-iin'
' - $ i n ' sample(henceforth
sample ( h e n c e f o r t h
refered
'coarse' land
) a n d samples
s a m p l e s ground in
i n aa rod
r o d mill
m i l l for
f o r 4 min
m i 1 2 and
and
r e f e r e d to
t o as 'coarse;
rnin,were floated.
f l o a t e d , Concentrate
C o n c e n t r a t e was collected
c o l l e c t e d continuously
c o n t i n u o u s l y for
f o r 16min,
:16min,
8 min,were
b
u t the
t h e concentrate
concentrate w
a s collected
c o l l e c t e d separately;for
s e p a r a t e l y , ' f o r the
t h e time
t i m e intervals
intervals
but
wa~
'0-1,1-2,2-4,4-8,8-16
min.These samples
s a m p l e s were screened
screened
'0-1,1-2,2-4,4-8,8-16
min.These
a t 100
1 0 0 mesh,
at
a s s a y e d to
t o give
g i v e data
d a t a for
f o r grade
g r a d e and recovery
r e c o v e r y as aa function
f u n c t i o n of
of
and assayed
float
f l - o a t time and grind
g r i n d timco
time,
P u l p density
d e n s i t y and reagents
reagents were varied
vari-ed in
i n the
t h e next
n e x t series
s e r i e s of
of
Pulp
,
-te~ts.
tests.
F l o t a t i o n ti~e
tirr~cwas
w a s five
f i v e minutes
minutes
Flotation
c o a r s e material.
material,
coarse
5
f o r these
t h e s e testspusing
t e s t s , u s i n g the
the
for
I
I
l
.,.
t
I
at
ssoli-ds
oil
at: 20%
20% solids
p i n e oil
.1 Ib/ton
l b / t o n lHne
.1
at
at; 32.%
32% solids
solids
.1
,1 lb/ton
lb/(;on pine
p i n e oil
oil
.1
,1 Ib/ton
l b / t o n Aeroflot6S
~ e r o f l o t 6 5at
a-t 20%
20% solids
solids
& .2
.1
.1 Ib/ton
l b / t o n Dine
p i n e oil
oil&
.2 lb/ton
l b / t o n fuel
fuel
&
Aeroflot65
.1 lb/ton
l b / t o n ~ e r o f l o t 6 5& .21b/t
,21b/t fuel
fuel
.1
oil
oil
oil
oil
a t 20%
20% solids
solids
at
h e concentrates
c o n c e n t r a t e s and
and tails
t a i l s from
from each
each of
o f these
t h e s e were assayed.
a s s a y e d , to
to
etermine the
determine
t h e effect
e f f e c t of
o f these
t h e s e variations
v a r i a t i o n s on
on grade
grade and
and recovery.
recovery.
A
A successive
s u c c e s s i v e float
f l o a t test
test
(froth collected
c o l l e c t e d UD
uo to
t o 88 min.) was
was
(froth
o n e on
on L~min
4min ground
ground material
m a t e r i a l g, using
u s i n g "pine
p i n e oil
o i l and
and fuel
f u e l oil
o i l to
t o compare
compare
similar test
t e s t on
on same
same material
m a t e r i a l using
u s i n g only
o n l y pine
p i n e oil.
oil,
i t h aa similar
A
A series
s e r i e s of
o f grind
g r i n d tests
t e s t s were
were done
done to
t o determine
d e t e r m i n e whether
w h e t h e r graphite
graphite
is
i s broken
b r o k e n or
o r preserved
o r e s e r v e d preferentially
p r e f e r e n t i a l l y during
d u r i n g grinding
grinding•
. . Samples
Samples
were
were ground
ground for
for
1.1
2"
,
•
1,
1 , 2.
2 , and
and 44 minutes
m i n u t e s and
and screened
s c r e e n e d from
from 10mesh
lomesh
to 100. mesha
A
A. potential
p o t e n t i a l flowsheet
f l o w s h e e t for
f o r maximizing
maximizing +100
+I00 mesh
mesh graphite
g r a ~ h i t ewas
was
run.
run,
A
A coarse
c o a r s e sample
sample (1200g
(1200g )) was
w a s .:screened
. s c r e e n e d at
a t 28
2 8 mesh,
mesh, and
and the
th'e
oversize was
was ground
ground for
f o r 44 min
min in
i n the
t h e rod
r o d mill.The
m i l l . T h e ground
ground product
product
oversize
was
was then
t h e n recombined
recombined with
vrith the
t h e undersize.
u n d e r s i z e , and
and aa 600
600 gg samDle
s a r n ~ l ewas
was floated
floated
minutes.
s u c c e s s i v e l y for
f o r 88 minutes.
successively
Note za
: a 1200
1200 gg sample·was
sample w a s screened,
s c r e e n e d , in
in
Note
order
o r d e r to
t o maintain
m a i n t a i n volume
volume of
o f ~olids
s o l i d s in
i n the
t h e mill,
m i l l , to
t o preserve
p r e s e r v e grinding
grinding
conditionso
Experimental
E x p e r i m e n t a l Results
Results
Test
1:
T e s t results
r e s u l t s are
a r e tabled
t a b l e d in
i n Appendix
Appendix 1.'
,,
Discussion
D
- i s c u s s i o n of
o f Results
Resul-ts
- G r i n d i n g Times
Times
-Grinding
t h e grinding
g r i n d i n g times
t i m e s considered
c o n s i d e r e d (up
( u p to
t o 88 min. of
o f rod
rod
Under the
milling)
m i l l i n g ) the
t h e overall
o v e r a l l graphite
g r a p h i t e recovery
r e c o v e r y can be seen
s e e n to
t o increase
i n c r e a s e with
with
time.
time,
Grinding
G r i n d i n g reduces
r e d u c e s the
t h e particles
p a r t i c l e s down
down to
t o aa floatable
f l o a t a b l e sizE!"
size,
Grade unereases
u n c r e a s e s as
as well
w e l l UD
uo to
t o the
.the 4 min
rnin grind'
g r i n d ' indicating
i n d i c a t i n g further
further
Grade
liberation
l i b e r a t i o n of
o f floatabcle
f l o a t a b - l e size
s i z e particles.
particles.
After
A f t e r 88 minutes
m i n u t e s of
o f grinding
grinding
t h e grade
g r a d e was
w a s actually
a c t u a l l y found
found to
t o decrease,
d e c r e a s e , indicating
i n d i c a t i n g floatfloathowever the
n o n - g r a n h i t e particles;
p a r t i c l e s ; eg
e g ver~
v e r y fine
f i n e gangue
gangue material..
material.
i n g of
o f non-grauhite
ing
Plots
Plots
of
w i l l be
b e found
found oh
oh Graphs
Graphs land
l a n d 2.
2.
o f these
t h e s e results
r e s u l t s will
S i m i l a r plots
p l o t s resulted
r e s u l t e d for
f o r the
t h e +100~esh
+100'mesh material,
m a t e r i a l , as
as shown
shown
Similar
G r a p h s 33 and
and 4,.
4.
by Graphs
by
Both the
t h e grade
g r a d e and
and recovery
r e c o v e r y of
of the
t h e +100
+ l o 0 mesh
mesh
Both
g r a ~ h i t eare
a' r e somewhat
somewhat high?r
h i g h e r than
t h a n those
t h o s e of
of the
t h e overall
o v e r a l l grauhiteo
gra~hite,
granhite'
T h i s indicates
i n d i c a t e s that
t h a t the
t h e finer
f i n e r fraction
f r a c t i o n does
does not
n o t float
f l o a t as
a s well,
w e l l , nor
nor
This
as selectively"
selectively,
as
A better
b e t t e r indication
i n d i c a t i o n of
of what
what we
we are
a r e actually
a c t u a l l y after
a f t e r can
c a n be
be
A
and 6,
6, which
which show
show 'recovery
' r e c o v e r y xx fraction
f r a c t i o n +100mesh
- + 1 0 0 1 n 2 s..h ~ .
s e e n from
from Grauhs
Graphs 55 and
seen
'
shows that
t h a t 88 minutes
m i n u t e s of
o f grind
g r i n d h~s
h a s better
b e t t e r recovery
r e c o v e r y of
o f +100m
+.loom
G r a ~ h33 shows
G~aph
b u t Granh
Graph 55 and
and 6,
6, by
by incorporating
i n c o r p o r a t i n g the
t h e amount
amount of
o f +100
+I00 m
rn graphite
graphite
but
p r e s e n t , shows
shows that
t h a t there
t h e r e was
was less
l e s s material
m a t e r i a l ,there
. t h e r e to
t o recover"
recover,
present,
Thus
Thus
e v e n though
t h o u g h the
t h e 44 min'grind
rnin g r i n d has
h a s lower
l o w e r recovery,
r e c o v e r y , the
t h e fact
f a c t that
t h a t there
there
even
is more
more material
m a t e r i a l in
i n .the
t h e +100m
+loom category
c a t e g o r y result~
r e s u l t s in
i n overall
o v e r a l l more
more +100m
+loom
is
g r a p h i t e being
b e i n g recovered.
recovered.
graphite
t h e 44 min
rnin grind
g r i n d was
was found
found to
t o be
be higher
h i g h e r than
t h a n that
that
The grade
g r a d e of
o f the
The
.
>.
of the
t h e coarse,
c o a r s e , basically
b a s i c a l l y due
d u e to
t o aa greater
.greate; degree
d e g r e e of
o f liberation.
liberation.
of
improvemenL did
d i d not
n o t carryon
carry o n to
t o the
t h e 88 min
rnin grindo
grind.
improvement
This
This
T h i s curve
c u r v e was
was
This
found to
t o lie
l i e between
between the
t h e coarse
c o a r s e and
a n d 44 min
min grind
g r i n d curves
c u r v e s (( gra'.l1
gm.11~
2)
found
2)
,
'I
Pi.
1
fdicating
d i c a t i n g that
t h a t althou~h
a l t h o u g h greater
greater liheration
li.t)cral;j.on resulted,
r e s u l t e d , the
-[;he floCl.t
f1.oa.t
breame
b came less
l e s s selective
s e l e c t i v e at
a t the
t h e grind
g r i n d size.
size.
, Grauh
combined resultsl
r e s u l t s t that
. t h a t the
t h e grade
g r a d e of.
of.
-the combined
Graph 66 clearly
c l e a r l y shows
shoivs the
t~e
t h e 88 min
min grind
g r i n d is
i s below
below that
t h a t of
of the
t h e 44 min
min grind
g r i n d and
and that
t h a t even
even the
the
I
n~t
nkt
recovery
r e c o v e r y is
i s lower.
l o w e r , due
d u e to
t o the
t h e fact
f a c t that
t h a t there
t h e r e is
i s less
l e s s +100
+lo0 m
m
g~aPhite
ghaphite
I
ploduces
p *educes
I
float~
to
to float,
.~a
Thus
Thus the
t h e 44 min
rnin grind
g r i n d (80
(80
%
% passing
passing
35mesh)
j5mesh)
more
more favorable
f a v o r a b l e ma·terial
mg:l;erial for
f o r ·flotation.
.flotation.
- F l o t a t i o n 1'ime
Time
-Flotation
-
These same
same plots
p l o t s 11 - 66 also
a l s o show
show how
how grade
g r a d e and
and recovery,
recovery,
These
and
f r a c t i o n vary
v a r y with
w i t h flotation
f l o t a t i o n time.
time,
and recovery
r e c o v e r y xx fraction
Here
Here it
i t can
c a n be
be
d u r i n g the
t h e time
t i m e interval
i n t e r v a l 8-16
8-16 min~tes)thereis
minutes, t h e r e i s very
v e r y little
little
s e e n that
t h a t during
seen
difference
r e c o v e r y , a n d the
t h e grade
g r a d e begins
b e g i n s to
t o drop
d r o p off
o f f rapidly.
rapidly,
d i f f e r e n c e in
i n the
t h e recovery1and
What
i s that
t h a t the
t h e froth
f r o t h wa5
was essentially
e s s e n t i a l l y bare,
b a r e , and
and what
what
What this
' t h i s refers.
r e f e r s . to,
to, is
i t did
d i d contain
c o n t a i n were
were g~ngue
gangue material.
material,
few uarticles
p a r t i c l e s it
few
T h e r e were
were still
still
There
'.
some large
l a r g e flakes
f l a k e s of
o f graphite
g r a p h i t e in
i n the
t h e tails
t a i l s -seen
- s e e n visually
v i s u a l l y as
as well
w e l l as
as
some
i s indicated
i n d i c a t e d by
b y the
t h e recovery
r e c o v e r y plots
p l o t s of
o f the
t h e +100m
+loom graphite,
g r a p h i t e , but
b u t these
these
is
i n the
t h e last
l a s t time
t i m e interval
i n t e r v a l wh~n
when there
there
p a r t i c l e s did
d i d not
n o t even
even float
f l o a t in
particles
w a s Ii
l i ttle
t t l e else
e l s e floating.
floating,
was
T h i s indicates
i n d i c a t e s that
t h a t these
t h e s e partic"les
p a r t i c - l e s are
are
This
n o n - f l o a ttable
a w l e at
a t this
t h i s si
s i ze.
ze.
nOh--floa
examined tb
to
examined
cor\reCt
Coc'C'cc:t.
C o n v e n t i o n a l l y regrinding
r e g r i n d i n g would
would bE~
be
Conventionally
t h i s , but.
b u t in
i n our
o u r case
c a s e since
s i n c e size
s i z e is
i s also
also
this,.
i m ~ o r t a n tregrinding
,r e g r i n d i n g 01'
o f material
m a t e r i a l above
above some
some c,utoff
c u t o f f point
p o i n t only
o n l y (eg:
imnortant.
(eg:
. ,
+65m or+48m)
or+48m) would
would have
h a v e to
t o be
b e examined.
examined,
+65m
I t was
was found
found that
t h a t as
as grinding
g r i n d i n g time
t i m e was
was increased,
i n c r e a s e d , the
t h e ~lount
anount
It
of concentrate
c o n c e n t r a t e collected
c o l l e c t e d tended
tended to
t o peak
peak earlier
e a r l i e r in
i n the
t h e flotation
flotation
of
- t e s t sleg
l e g after
a f t e r . 4l b min
min of
o f floating
f l o a t i n g : for
f o r the
t h e 88 min
rnin grind,
g r i n d , after
tests
min
a f t e r 88 min
f o r the
the
f6r
rnin grind;
g r i n d ; and
and in
in
44 min
f l o a t e d more
more slowlyo
slowly.
floated
.tho coarse
c o a r s e te~t
t e i t the
t h e material
m a t e r i a l was
vias overall
overall
the
T h i s can
can bd
be seen
s e e n by
by the
t h e slopes
s l o p e s of
o f the
t h e curves
curves
This
R
I
I \
I
_~_,
on
---on
/
i
i
._
. .
Graph
G r a p h 3,
3, and is
i s aa reflection
ref.'lecI;i.on of
o.€ the
t h e difficulty
d i f f i c u l t y of
o f floating
f l o a t i n g very
very
...
coarse
c o a r s e particles.
p a r t i c l e s , due to
-Lo bubble
b u b b l e loadin5
l o a d i n & dropback
d r o ~ b a c k~tb
et'c ••• It
I t should
should
be noted
n o t e d here
h e r e that
t h a t in
i n fact
f a c t there
t h e r e was
was very
v b r y little
l i t t l e froth
f r o t h involved
involved
1
A?
$
1
1
..
,
1
j-
~\
with_any
w i t h .any of
of
the
the
float
f l o a t tests,which
t e s t s , w h i c h would
would tend
t e n d to
t o compound
compound the
t h e above
above
mentioned
m e n t i o n e d difficulties,
d i f f ' i c u l t i e s , and decrease
d e c r e a s e overall
o v e r a l l recovery.
recovery.
Since
S i n c e this
this
lack
l a c k of-froth
o f f r o t h was constant
c o n s t a n t thr-oughout
t h r o u g h o u t all
all the
t h e float
f l o a t tests,
t e s t s , ij ,tt
aupears
a o p e a r s to
t o bff
be. characteristic
c h a r a c t e r i s t i c of
o f this
t h i s flotation
f l o t a t i o n sy~tem
system.•
.-Effect
- E f f e c t of -Flotation
' F l o t a - t i o n Environment
A number of tests
t e s t s were done
done to
t o see
s e e the
t h e effect
e f f e c t of
o f changing
chan,ging
flotation
f l o t a t i o n environment
e n v i r o n m e n t ~n
on grade
g r a d e and recovery
r e c o v e r y (Graph7)
(Graph7) as
a s well
w e l l as
as to
to
improve
t h e froth
f r o t h conditions.
conditions.
improve the
Increasin~"
s l u r r y density
d e n s i t y from
from 20%
20% in
i n test
t e s t 11
11 to
t o j2%
32% in
in
I n c r e a s i n g . . slurry
test
1 2 had virtually
v i r t u a l l y no
no effect
e f f e c t on grade
g r a d e and
and recovery,
r e c o v e r y r 72097%C
72,97$C
t e s t 12
at
a t 53.39%rec
53.39grec
vs
vs
74.56%C
74.56% at
a t 51.39%""rec
5 1 . 3 ~ ' r e c respectively.
respectively.
Similarly
S i m i l a r l y Aeroflot
A e r o f l o t 65
65 resulted
r e s u l t e d in
i n 72.97%C
7 2 . 9 7 % ~at
a t 5505%
5509$ rec, and did"
did
not
c h a r a c - t z r i s t i c s significantlyo
significantly.
n o t improve the
t h e frothing
f r o t h i n g characteristics
Fuel
F u e l oil,
oil,
in
i n conjunction
c o n j u n c t i o n with
w i t h each
e a c h of
o f uine
p i n e oil
o i l and Aeroflot65
A e r o f l o t 6 5 improved the
the
r e c o v e r y , but
b u t greatly
g r e a t l y decreased
d e c r e a s e d the
t h e grade.(52.09%Cat70.25%rec
g r a d e . ( 5 2 . 0 % ~ a t 7 0 . 2 5 g r e c and
recovery,
52.78GC at
a t 76.42%rec
76.42Prec res-oectively).
respectively).
52.78%C
t h a t these
t h e s e tests
t e s t s were
were
Note that
made
made using
u s i n g the
t h e coarse
c o a r s e feed
f e e d and floated
f l o a t e d for
f o r five
f i v e minutes,
m i n u t e s , hence
hence
1
I
the
t h e low
low resulting
r e s u l t i n g grades
g r a d e s and recovery.
recovery.
A previ
p r e v i oous
u s test
t e s t (8)
( 8 ) using
u s i n g 20~'o
2076 solids
s o l i d s and pine
p i n e oil,
o i l , for
f o r EiUccessi
s u c c e s s i ve
ve
A
,
I
!
f l o t a l i o n , was
was plotted
p l o t t e d along
a l o n g with
w i t h the
t h e above
above results
r e s u l t s on
on Graph
~ r a p h7,to
?,to
flotation,
show the
t h e margin
margin of
of error
e r r o r between different
d i f f e r e n t days
d a y s versus
v e r s u s different
different
show
f l o t a t i o n environment,
e n v i r o n n e n t r eg
e g test
t c s - t 11
11 point
p o i n t s~ould
s i o u l d fall
f a l l bn
on test
t e s t 88 line.
line.
flotation
"
"
Thus tests
t e s t s 11,12,13
11'. 1 2 , 1 3 were deemed
dee:necl indistinguishable,as
indistinguishable , a s
Thus
vier(!
were
/""""-- ts·
1 L~ a
'
and 1 So
s 1
This
%301ids
results
T
h i s means $
s o l i d s hhad
a d no eeffect
f f e c t on tthe
h e r.esu,l'l;s
/---
and tthat
oil
Aeroflot65
h a t cchanges
h a n g e s from nnine
ine o
i l tto
o ~
e r o f l o t 6 5were eessentially
s s e n t i a l l y iindeterndeterminable.
m
inable.
SimilarlY
oil
using
a r g e eeffect,
ffect, u
s i n g iit
t
S
i m i l a r l y aalthough
l t h o u g h ffuel
uel o
i l had a llarge
with
uine
oil
orr ~
Aeroflot65
w
i t h eeither
ither p
ine o
il o
e r o f l o t 6 5gave tthe
h e same rresult.
esult.
Graph 8 shows two ssuccessive
u c c e s s i v e ffloat
l o a t ttests,
e s t s , showing tthe
h e eeffect
ffect
of
using
deemed tthe
of u
s i n g fuel
f u e l '"oil,
o i l , since
s i n c e this
t h i s was
wa.s deened
h e only
o n l y chemical
c h e m i c a l change
ttested.,
e s t e d , tto
o
show
any effect
e f f e c t on flotation
f l o t a t i o n res).ll
r e s y l ts.
ts.
Fuel
F u e l oil
oil
greatly
ma"terial
to 92%
g r e a t l y increased
i n c r e a s e d rrecovery
e c o v e r y of
of 4
4 min grind
grind m
a - t e r i a l from 72%
72% t*
92$
(after
( a f t e r 88 min ~f
o f flotation.).
f l o t a t i o n . ) . But the
t h e selectivity
s e l e c t i v i t y of
o f the
t h e float
f l o a t was
lrras
greatly
g r e a t l y reduced:
r e d u c e d : grade
g r a d e dropped from 80%C
805C to
t o 50%
50% C.
C.
-Preservation
- P r e s e r v a t i o n of.
of +100mesh
+lOOmesh material
material
Since
w a s to
t o maintain
m a i n t a i n as
as much +100m
+loom graphite
g r a p h i t e as
as
S i n c e the
t h e object
o b j e c t was
possible,
p o s s i b l e , aa flowsheet
f l o w s h e e t was ~rawn
drawn Whereby
whereby -28mesh
-28mesh material
m a t e r i a l was
w a s screened
screened
out
o u t prior
p r i o r to
t o grinding.
grinding.
4minutes(80%
4 m i n u t e s ( 8 0 % -35m).
-35m)
for
f o r flotation.
flotation.
The'
w a s .then
t h e n "ground
ground for
for
The oversized
o v e r s i z e d material
m a t e r i a l was
This
T h i s was
vias then
t h e n recombined with
w i t h the
t h e undersized
undersj,zed
This
T h i s was
was based
b a s e d on
on the
t h e idea
i d e a that
t h a t material
m a t e r i a l less
l e s s than
than
28mesh can
c o ntained"essen
t a i n e d l e s s e ntially
t i a l l y Ii
l i bberated
e r a t e d graphi
g r a p h ite,
t e , and
and wi
w ith
t h screening,·
screening,
would avoid
a v o i d being
b e i n g unnecessarily
u n n e c e s s a r i l y reduced.
reduced.
The results
r e s u l t s of
of
The
t h i s test
t e s t are
a r e shown
shown on
on Graph
Graph 99 (73%+100m
(73$+100m
this
ground versus
v e r s u s 78.6%+100
78,6$+100 for
f o r sample
sample screened
s c r e e n e d at
a t 28m
28m prior
p r i o r to
t o grinding).
grinding),
ground
And although
a l t h o u g h the
t h e recovery
r e c o v e r y xx fraction+l00m
fraction+lOOrn is"
i s indeed
i n d e e d higher
h i g h e r for
f o r the
the
And
i s 6 5 . 55%
% vs
v s 7205%,
72.5%, while
w h i l e the
t h e grade
g r a d e dropped
drdpped
. l a t t e r scample,
s a m p l e , the
t h e difference
d i f f e r e n c e is65.
.latter
from 85.5%C
85.55C to
t o 71%
71% C.
C,
from
Thus the
t h e '4
' 4 minute
m i n u t e grind.'
grind.' sample
sample is
i s at
a t aa good
good
Thus
I
g r a d e as
as is
i s9, while
w h i l e the
t h e 'screen
' s c r e e n H,ei\ 44 min
grade
rnin grind'
g r i n d sample,
s a r n p l . eapartfrorn
, a p a r t frorn
r e q u i r i n g screening
s c r e e n i n g uri
~ r or
i o to
rt o flotation
f l o t a t i o n would
would require
r e q u i r e aa cleaning
c l e a n i n g stage;
stage;
requiring
,,
llhb increase
i n c r e a s e in
i n recovery
r e c o v e r y is
i s at
a - t aa lare;e
l a r g e exuense
exuense in
i n grade
grade.
'l'he
0
1
n
-GrindinB
-Gri.ncii ny: Kinetics
Kin(: t i c s
-
Graph
G r a p h 10
10 shows
shorrs the
t h e effect
e f f e c t of
of' grind
g r i n d times:
t i m e s on
on the
t h e fraction
f r a c t i o i ? of
+100m
+lOOm and
and recovery
r e c o v e r y after
a P - t e r 5 minutes
min1.1-tes of
o f flotation.
fl.otat;ion.,
Recovery x fraction
fraction
+100m
+loom 1s
is plotted
p l o t t e d as
as well
w e l l to
t o sho~
she?! the
t h e disappearance
d i s a p p e a r a . n c e of the+l00m
t h e +100rn
The latter
l a t t e r reaches
r e a c h e s aa peak before
b e f o r e 6minu~es
6minutes of
o f grinding
grinding
graphite.
g r a ~ h i t e . The
in
m i n u t e s of
of
i n accordance
a c c o r d a n c e with
w i t h previous
p r e v i o u s results
r e s u l t s indicating
i n d i c a t i n g that
t h a t 44 minutes
gr~nd
g r i n d was
was be
b etier
t t e r than
t h a n 88 minutes
m i n u t e s grind.
grind,
The
T h e breakage
b r e a k a g e during
d u r i n g grinding
g r i n d i n g was
was further
f u r t h e r investigated
i . n v e s t i g a t e d using
using
the
t h e series
series of
o f grind
g r i n d tests.,
t e s t s , tto
o see
s e e if
i f the
t h e graphi
g r a p h ite
t e nossibly
~ o s s i b l yei
e i th€~r
ther
br~aks
breaks
or
i s Dreserved
reserved nreferentially,
refer en ti ally, and
and to
t o see
s e e the
t h e breakage
b r e a k a g e at
at
o r is
different
d i f f e r e n t mesh sizes.
sizes.
Graphs
Graphs 11
11 -- 14
19 are
a r e the
t h e disappearance.plots,
d i s a p p e a r a n c e . p l o t s , for
f o r the
t h e overall
overall
material
m a t e r i a l and
and then
t h e n for
f o r the
t h e graphite
g r a p h i t e alone.
alone.
The
The magnitUdes
magnitudes of
o f the
t h e k's
k's
were
were found
found to
-to be
be approximately
a p p r o x i m a t e l y the
t h e same,
same, thus
t h u s indicating
i n d i c a t i n g that
t h a t graphite
graphite
d o e s not
n o t break
b r e a k either
e i t h e r preferentially
p r e f e r e n t i a l l y nor
n o r is
i s preserved.
preserved.
does
Linearity
Linearity
of
values,since
of the
t h e plots
p l o t s was
was not
n o t perfect,
p e r f e c t , thus
t h u s the
t h e differences
d i f f e r e n c e s in
i n kk values,since
small,
small,
were
were
attributed
a t t r i b u t e d to
t o difficulties
d i f f i c u l t i e s in
i n drawing
drawing the
t h e graph
to
f i - t the
t h e datao
data,
t o fit
T h e . . v a l u e s of
o f nn were
were found
found :from
from Diots
lots of
o f Lnk'
~ < k versus
v
' e r s u s Ln'd'.·
Ln'd'. The
The
The"values
k'overall
dependent on
k o v e r a l l was
was found
f o u n d to'
t o ' be
b e slightly
s l i g h t l y more
moredependent
on size
s i z e then
t h e n kk
gra'Ohite
g r a ~ h i t e(n=.84
(n=,84 and
and n:::.61
n = . 6 l ),
) , although
a l t h o u g h this
t h i s difference
d i f f e r e n c e in
i n magnitude
magnitude
is
i s very
v e r y small,
s m a l 1 , iin
. n particular
articular with
w i t h reference
r e f e r e n c e to
t o the
t h e degree
d e g r e e of
of scatter
scatker
- w i t h the
t h e graphite
g r a p h i t e pointso
p o i n t s . kk does
does decrease
d e c r e a s e with
w i t h size,and
s i z e , a n d judgirtg
j u d g i n g from
froin
·with
t h e shallowness
s h a l l o w n e s s of
o f the
t h e 100m
l O O m plots,
p l o t s , this
t h i s size
s i z e fraction
f r a c t i o n does
d o e s not
not
the
break
b r e a k very
v e r y readily.
readily.
These two
two findings
f i n d i n g s supnort
supporL the
t h e previously
previously
These
. t h a t screening
s c r e e n i - n g out
o u t +28m
+28m
tha.1;
s t a t e d recommendation
recommendation
stated
material prior
n r i o r to
t o '~rinding
k r i n d i n 2 Vias
was not
n o t warranted:
warranted:
material
11
.,,-
.
.,
~ .l
lL .ause
, a u s e the
t h e graphite
g r a p h i t e does
d o e s not
n o t break
b r e a k preferentially,
p r e f e r e n t i a l l y , nor
n o r do
d o the
t h e fine
fine
fractions
f r a c t i o n s get
g e t significan"tly
s i g n i f i c a n t 1 . y reduced.
reduced,
Conclusions
C o n c l - u s io n s
Based on
sarn-oles, the
t h e feed
.feed ore
o r e contained
contairled
o n the
t h e assays
a s s a y s of the
t h e samules,
between
b e t w e e n 2.7%C
2.75C and
a n d 303%C.
3.35C.
Although
Al-though this
t h i s 1S
i s aa w.ide
w i d e range,
r a n g e , the
t h e tests
tests
performed
' p e r f o r m e d on
o n anyone
a n y o n e day
d a y were in
i n aa much sm~ller
s m a l l e r range.
range,
Although
A l t h o u g h the
the
ore
o r e was
w a s riffled
r i f f l e d extensively
e x t e n s i v e l y to
t o obtain
o b t a i n representative
r e p r e s e n t a t i v e samples,
s a n p l e s , aa
small
small degree
d e g r e e of
o f variation
v a r i a t i o n might
m i g h t still
s t i l l be exnected.
exnected.
Another
A n o t h e r 1)oint
ooi.nt
worth
w o r t h mentioning
m e n t i o n i n g is
i s that
t h a t the
t h e assaying
a s s a y i n g was
w a s done
d o n e in
i n aa batbh-wise
b a t c h - w i s e fashion
fashion
also:
a l l the.samples
t h e s a m p l e s tested
t e s t e d on one
one day
d a y were
w e r e brough
a l s o : eg
e g all
lab.
l a b , as
as aa group.
groun,
Thus
Thus any
a n y fluctuations
f l u c t u a t i o n s in
i n assaying
a s s a y i n g on aa day
d a y to
t o day
day
basis
b a s i s would affect
a f f e c t each
e a c h group
g r o u p of
o f samples
s a m p l e s differently.
differently,
fUrther
emnhasise
f u r t h e r emuhasise
to
t o the
t h e assay
assay
This
T h i s would
the.differences
t h e d i f f e r e n c e s petween
b e t w e e n the
t h e grouns
g r o u o s of
o f samules.
san~les.
Since
S i n c e the
t h e orebody
o r e b o d y had
h a d ureviously
~ r e v i o u s l ybeen
b e e n determined
d e t i e r n i n e d as
a s containing
containing
double
g r a n h i t e found
f o u n d in
i n our
o u r tests,
t e s t s , this
t h i s assay
a s s a y was
was
d o u b l e the
t h e amount
amount of
o f grauhite
checked
c h e c k e d in
i n aa number
number of
o f ways.
First,
First,
and
a n d determined
d e t e r m i n e d to
t o contain
c o n t a i n about
a b o u t J%C.
3$C.
it
i t was examined microscouically
microsco~ically
Further
F u r t h e r sinoe
s k n o a it
i t was
was suggested
suggested
t h a t some
some of
o f the
t h e graphite
g r a p h i t e might
m i g h t be
b e left
l e f t coating
c o a t i n g the
t h e grinding
g r i n d i n g mill,
mill,
that
s a m ~ l eof
of are
o r e was
w a s sampled~
s a m p l e d p "ground,
. g r o u n d , and resampled;
r e s a m p l e d ; wi
w i th
t h both
b o t h sa.mples
s,q4mples
aa samule
b e i n g sent
s e n t for
f o r . assay
a s s a y .•., T
h e results
r e s u l t s showed the
t h e samples
s a m p l e s .to
, t o differ
differ
being
The
b y .02%C
. 0" 2 %I ~thus
, t h u sindicating
i n d i c a t i n g that
t h a t no
no carbon
c a r b o n was
was lost
l o s t by this
t h i s means
means.o
'by
It
I t would
would thus
t h u s aUDear
a p n e a r that
t h a t either
e i t h e r the
t h e fiist
f i r s t assay
a s s a y of
o f the
t h e are
ore
was incorrect
i n c o r r e c t or
o r that
-that;the
'tihe two
-two sall\ples
s a m p l e s of
o f OT.e
o r e came
came from
from different
dirferen-t
was
s e c t i o n s of
o f the
t h e orebody,
o r e b o d y , and
and do
do indeed
i n d e e d dif;fer
dif:fer by
b y this
t h i s significant
significant
sections
ano-unt.
arno_unt.
T h i s wilL
w i l l have
hAve to
t o be
be clarified
c l a r i f i e d before
b e f o r e the
t h e economics
econo;nics of
This
t h e orebody
orebody
m i l l i n g the
milline
can be
5e determined.
determined.
cun
,
a
.
Based
Erinding atld
and ffloat
done., iitt aap'lcars
B
a s e d oon
n the
Lhe grindin{;
l o a t ttests
e s t s done,
p q e a r s tthat
hat
BO%-J5mcsh nprovides
outimum flo'.t;at.i.on
flotation rresults,
ggrinding
r i n d i n g tto
o 80$-35incsh
r - o v i d e s tttle
h e or>ti.rnu~n
e s u l t s , by
of ggraphite
while
minimizing
+100m
hile m
inimizing +
l o o n llosses
o s s e s ,o
pproviding
r o v i d i n g good rrecovery
e c o v e r y of
raphite w
.C
Cleaning
o t iinvestigated
n v e s t i g a t e d iin
n tthis
h f s rreport.
eport.
l e a n i n g was nnot
80% -35~1,
-35m, with 8 m
minutes
grades
of
80%
i n u t e s ooff fflotation
l o t a t i o n gave g
r a d e s of
Grinding
G
rinding
att
a
att
885.5%C
5 . 5 % ~a
80% rrecovery
of +loom
+lOOrn g
graphite,
of a
all
80%
e c o v e r y of
r a p h i t e , 772%
2 % rrecovery
e c o v e r y of
l l egraphite.
raphi-te.
F u e l oil
o i l 'was
.was found to
t o greatly
g r e a t l y increase
i n c r e a s e recovery
r e c o v e r y ttoo 92%,but
925,l)ut
Fuel
would necessitate
n e c e s s i t a t e an
a n e~xtensi~e
x t e n s i v e cleaning
c l e a n i n g staie
s t a g e ,as
, a s tthe
h e grades
g r a d e s droo
d r o p tto
o
.
50%C.
50$C
.
,.
1 '1
Fief erenc~::;
1. Alabama
Alabama Flake
Flake Graphite
Graphite Company,H.J.Gisler,
Company,H.J~Gisler, Nesv
New York
York
1.
2. Graphite,G.D,Graffin;
Grauhite,G.D.Graffin; from
from Industrial
Industrial Minerals
Minerals and
and
2.
Rock~,
4th
Edition.
1975
.
~ o c k s ,4 t h Edition,
3. ~Modelling
Mineral
Size Reduction
Reduction in
in a
a Closed
Closed Circuit
Circuit
3.
o d e l l i nMineral
~
Size
Ball Mill;
Mill; J.A.Finch,and
J.A.Finch,and J.Ramirez-Castro,
J.Ramirez-Castro, McGill.
McGill.
Ball
4. .Natural
Natural Gra~hi-te
Grauhite Retains Traditional
Traditional Marltets
Markets,, IndustIndust4.
rial
Minerals,
Oct
1976.
rial Minerals,
1976.
·
,
TEES'I' NUMBIZR
-1
min grind
-1 min
grind
i n float,
f l o a t , .1lb!t
-5 mmin
plne
.llb/t p
i n e oil
oil
2
THE
MASS
AND GRAPHITE
TI-IE M
A S S RP.lr:l
GI:iRF"I.i:CTE SPLIT
SF'L-IT WAS
2."79
628.42
G {-IT
628 + 4 2 G
AT
2 + 79 XC
IHE(~DG
(( 1.56
XC
Y+SO G
G
1 + 5 6 %)
XI AT 71.58
71e58 %C
9.80
(3I3NC
CONC
1.70
G (( 98.44
618+62 G
Y8t4.4 %)
i l ) ' AT
I t 7 0 XC
TAIL.S
TR.:[L.S 618.62
C)-CUrl
(j-'CUM
I
G - I: UM
MESH
XLT
%GT
Gf~ADE F'iEf:(~i:lVEFi'f
F~ECCJVEI:;;Y
M
EZ S 1.1
fi~nfi:;
X
XLT'
%CiT
GF;AIIE:
[.I EZ Tr 1
1S
10.0
10+0
7 + 2 ::!
:[2'j'+IfJ
20.0 127.1B
2 8 + 0 109.4:':i
105'+45
28.0
87.44
35.0
J5+0
87444
4
8 + 0 100.04
100+04
48.0
6:5.0
&!5+0 3:1..69
3:1.+(Cs(?
78.~:;~:i
100+0
7
8+55
100.0
8/)
+ ~3~:)
-100.0
-100+0
86+!35
10.0
loto
20.0
2040
2B.O
2BtO
35.0
35+0
48.0
48
+0
65.0
65+0
:lOO.O
:lOO+O
·'·100.0
-..loo, 0
0.00
0+00
01-43
0.43
:l.69
9
2:.~ ++ 2(,7
2Y
2.59
2
+5Y
:1..25
1 . 5
0.59
0+5Y
O+Y6
0.96
9[l.B~j
1I •+115
~j
0.98
1.15
It15
(18+€15
0 + 98
2
0+24
7i3+61
21+39
57
21.39
11 •+~57
in.
tIl
20.24
17+42
(s:L 420
3i3+80 . 3tiICr)
61.20
3D.DO
~~ • ~S9
17.42
47.28
13.91
13+P1
47.2
~ 2 ~ 7 24.1L4
4+1L4
15+"'
9 z3
1 •+::~6
56
6S+h4
3+;'5
1::)
.92
68.64
3.?5
~H
26.32
73.
5.04
4.37
5,04
26452
7 3 +MJ
68
4tJ7
:1.2
B6.10
1 2 ~+!:50
50
€!A+ 1 8
2.29
13.132
1
i~O
l~S.
1
3 +B2
8 2 , '-0.00
--o+oo I100~OO
GO+OO
I •+ 40
0.00
0 , o o 100.00
1 0 0 , 0 0 .. 0.00
GI00
95
4.39
4+39
? 5 ..
+-',1
hl
4.39
4
+39
78.
21.
17.24
17t.24
7 8 +:17
37
2 1 +6:'3
63
~;~j. 00
AS.
23.37
2
3+37
55.00
4
5 *00
00
26.43
21:1.
71.
2
6+43
2 8 +~57
57
7 1 +43
43
15.fJ:2
12.76
12+76
1 5 + 6 2 B4.18
84+18
9.BO
90.20
6.02
&to2
9.80
Y0+20
Y + 80
0,00
IO(i+(iO
9.80
0.00
100.00
0.00
0 + 00
fJ8.
12
F18+12
84.92
84t92
80.97
80+?7
"74.92
74472
'
72."18
72+78
72t24
72.24
"1.2;4
7+34
0.00
0 I00
2 * :1.6
:I.6
2.
t3 .18
+ 18
B
l().!:"!7
lot57
II+Gi5
11.06
~~j.18
5
+18
2 + 43
2.43
0.40
o+40
cm·,!c
CONC
0+00
0.00
18+?3
H1.93
..".
:'5i3
, > 8fo t69
63
~:il .27
:;I.
+27
~.):L.70
51+7G
6
5+70
b5.70
23e70
2:3.
"10
. !~"j.81.
5 t 8 I.
TAILS
T
AILS
10.0
7.22
10,O
7+22
20.0
2 Q + O :L26."75
126t75
28.0
2 8 + 0 107.76
107+76
35.0
8~:j.15
35tO
85.15
48.0
97.45
4
8+0
97+45
65.0
30.44
6540
30+44
100.0
77.96
loot0
77+(?6
8:::j.B9
-100.0
-IOO~+O
U5+09
1.17
7
20.49
20+4Y
17.42
17+42
13.76
13+76
15+75
15.75
' A.92
.4+92
12.60
12+1O
1:3.88
13+85
98.83
5'5+83
7B.
7 8 +:34
34
60.92
60+'?2
47.16
47415
:11
3 1 .41
+41
2b.4<1
26+4'?
l:~. 88
13.88
-0.00
-0+00
1.17
It17
21.
t)6
21+16
39.08
37+08
::)2.84
52+84
68.59
58+59
73.~j1
7
3+51
EJ6.12
€16+12
100
.. 00
10OtOO
.
'
0.98
O + f 8 100.00
j.00+00
1.28
81
It25
5 1 ,.. 007
7
2.11
2tl.X
6:Lt31
6:l.31
2.07
4St73
2+07
4S.73
:Ij.t86>
... Ht.>
48136,
48.30
1.I.+!5S
• :5tl
3
4 + 30
30
~~4.
Ie7
76+30
1.
765
"16.30
1.33
It33
94+19
94.19
~
$ s . rNNUf'iB[r~
I J M B ~ ; . : ~ ~3
TE.ST
"',;)
'rTHE
1-1 :1
AND
ND
IMASS
.T ,qs s A
-5 min ffloat,.llb/t
l o a t , . l l b / t ppine
i n e ooil
il
SF'I..
I T w~'JAS
GRAPHITE
1:' I. I
As
13
FZ,q.1: 1.1I: 's E s
632.07
&
):32,071(;("':!
11+~33
11.43 GG
620.64
6
2 0 + 6.4 GG
HEAD~;
t.IIEAD':i
CONe
CQNC
TAIU;)
"rA
:[.I.-!3
ME[~H
MESH
%
2
GFM1''1B
G
RAMS
10.0
45.9"7
lO+G
45+97
20.0
2:1.3.29
20i0 2:1.3*2?
28.0 . (to
2GtO
'r'•O~:j6
t56
-35,O
~
~ 5
3~j. 0
64.4 ~:;~j
8+0
7
+
,
'
7
1.
4
4
40.0
72.15
65.0
2~5. 20
6500
23i20
.100.0
B:L
5h.8:I.
100+0 56.
I:.-
-100~0
-100,O
-no
milling
-no milling
f.)~)
• ~.)4
6Est54
AT
AT'
(
((
2.79
%C . .
2
+ 7 9 XC
7.)) A'l'
7:~~ + 85 %C
1.Bl %
f~T 72+85
1+:31
%C
%)) AT'
98.19
1.50
AT
CI'
S + 19 %
1
+ 50 '%e
%(:
G·-CW·1
G.-ClJt.$
%LT
21-T
G'-CU~'1
GG.-CI.Jt.1
%GT
.XGT
GF';{lDE RECUUERY
f~ECOVU;;Y
GRADE
ti
E A I:I S
HEADS
,I
92.73
Y2+7J
7.27
7927
5E~.c)8
33.74
41.02
33+74 5 8 + 9 8 41+02
14
.• ;33
44.65
55.35
14.+33
4
4+6S
~'5. 35
6 ,J
C" + 0
C" 0
'5
10*21 34i44
65+55
10.21
34.44
11+41 223.03
3.93
76.97
11.41
76.97
3.67
19.36
80.64
3+67
1Ft36
€30+64
B.+("1(1
89.63
8
9 8 , 10.37
10.37
8'?+63
10
.. ~57
.--0.00
10+37
. --O+GO 100.00
100i00
f' ~~7
7+
27
1.24
1
i24
1. 60
It60
3.70
3+7(3
St70
5.70
4
,213
4.20
"
;513
5.50
2.33
2 + 33
1 t4t5
1.46
0
+0 0
0.00
3 .~'j7
3.57
11i48
11.48
12i61
12.61
l:1+63
11.63
5
0.39
5.,39
2+24
2.24
0t25
0.26
CONC:
CONe
,
.1.0.0
,LO+O
20.0
20,O
28.0
28.0
35.0
35 0
413.()
4 13 0 0
65.0
65+0
100.()
100,O
-100.0
-100+0
O.()O
0+ 00
0.73
Oi73
22 +
.. 50
50
2.BB
2.88
2.90
2+30
11 • 2~)
O.!:B
Qt53
00•.+ 64
6.4
10.0
45.97
lot0
4StY7
20.()
2 0 + 0 2'1:;~
'. ~56 .
2:1.2+56
28.0
06
28+0 8el.
U8+06
35.0
35+0 61.67.
61th7.
48
•. 0
69.
48+,0
b 9 +2~)
25
6~j
.0
2:L.9!5
h%+O
2:1+95
100.0
:100+0 !:':;().2B
Sb.2f3
-100.0
-100+0 64.
6 4 + '10
YO
100.00
0.00
100,00
otoo
93.61
6.
~59
Y3t61
6'+39
71.74
28.26
71,74
28.26
c c2~'=;
~~()
46.54
~)3
• 46
.<,:~+20
46+54
53.46
25.3"7
21.17
25037
21 + 17
78+83
1'8.83
10.94
10.24
10074
10.24
CI9i76
89.76
4.64
5.60
4t64
5.10 . 94.40
94+40
5.60
0.00
5 + 60
O + O O 100.00
100+00
0.00
0,OO
6.39
b+JY
21.87
21,87
t
"7.41
7t4:L
34
+2~5
34.25
14
1 .. 197
9.94
9
11..16
1.16
3.~.:;4
3+54
9.07
10.46
10+46
92.59
92.59
7.41
7+41
58.34
53i3.1 41.66
41+66
44.16
55.84
44i16
55.84
34.22
78
34+22 6~).
65+78
23.06
23+06 76.94
76+74
19.52
17+52 00.48
80.48
10.46
10+46 fJ9.!:-j4
87+54
-0.00
-0,OO 100.00
100+#0
0.00
0+00
0,oo
0.00
86.23
8i5+2;1 10.44
1C3 i.34
81.06
.
81+Qr5.
&0,54
60.
~'j4
77i28
50+46
77.28
60.46
70+8jL
6 6 +~'j6
56
70.8
JL
66.
76+07 74.54
74+54
76.0?
29tS6
74+60 29.86
74.60
7.14
4t7C
7.14
4.7<;'
T'A I 1. S
TAILS
1+24 100.00
100+00
1.24
1.31
8:Lt56
1.31.
8:l.56
1.
:50
1.50
39+45
39.46
2+36 39.54
2.36
39+54
1.49
l+49 33.44
Z3i44
1.48
It48
25+4t,
2:5.46
1.0 • (, ~:;
7O+:L4
"70.14
1+40 9:':i.21
95+21
1.40
'
,'
~:
..,
-
-,-I min g r i n d
- 5 rnin float, .llb/t
pine o i l
CONC
d:
" a
B. ·...,""'~!~~·;:".lt.a;IG:r;·. ~:)J!.,!~~~~,'£'.'Bm"'di1.~~U'fBUlIIf~·
'~f·
'1
~~
(
*:'~
~'.
t
,;~
,~
fi
TE!JT
NU~·tr3Er.:
-4 min grind
1::-
d
-5
THE MASS AND GRAPHITE
HEA~)~)
63D.04
lB.<J3
CONe
TAIL.[;)
619.:L:l
~1EBH
Gr~M1S
%
min float,
.11b/t Dine oil
SPLIT WAS
3.1~'j /.:c
G I0tT
( 2.97 %) AT 78.57 %C
G
0.84 %C
G. ( 97.03 %) (H
G-ClH-l
G-'CUf'i
[mADE HECm)f~fa
%GT
%LT
f
.'j.
~:
1.:.-'.-
HEAD::;
o~oo
10.0
:~ ~ 2~)
20.0
:.H) • :L 6
28.0
3~5. 0
79.42
J. ::.)4 • ~.~ 0
48.0
6~:;j +0 .
53.10
100.0 140.0}
j. 7"7. B4
--100.0
o~oo
0.,51
4,,73
j.2 •. 45
24 •. 17
B •. 32
21 ,,9!:."i
27 •• 87
100.00
99.49
(14.76
B2.32
~;jBd5
49.D3
27tH7
:-0.00
0.00
0.51
~j. 24
17.68
41. W5
50.17
72.:l3
100.00
0.00
0.00
. 6. O(l
O. tJO
5.79
"-1.19
3.74
6.30'
1."77
1.83
5.92
1:3. /) 9
22+H1
1:::;.79
8.90
6.29
0.00'
BO.8l
90.17
H7.09
8~'j. 05
76.64
74.49
53.36
0.00
72.20
3H.94
0.00
2.47
0.00
38.71
·1 • 9~5
31.8t)
'0."75
0.79
() • 3~5
o .:'"JO
1.1.3
17.21
20.41.
C(JNC
JO.o
20.0
28.0
35.0
48.0
65.0
100.0
-100.0
0.00
O.:l5
1.32
::L 16
0 •• 00
0 •• 79
6 .. 97
100.00
99.21
It)~,69
75.54
'17.0}
"I-Z
CI/")
7~.9~_..J
.. 40
20,,47
::~1 .. fJ7
12 •• 68
2.37
12 ~~ 52
-0.00
0.00
10.0
20.0
3.10
28.84
28.0
3:5.0
76.26
14B~Bl
48.0
65.0 . 48. (76
100.0
1~"i7. 67
-1.00.0
:L "7~~ .47
0 .. 00
o~. 50
4 .. 66
12',,32
24 .• 04
7~, 91
:~2 .,24
100.00
99.50
94.84
~) + ~·59
4.14
::~
:2~~j
t
~~o
1'')
._. r..;·"',
d-'..
" 0.00
0.79
7.77
24.46
~'j2 + 93
74.80
87.48
100.00
61.2(,;.'
6G.:l·<}
If
02.79
79.59
.>
94.BB
TAILS
213., :34
8:~~ + ~)2
0.00
0.50
~'j. 16
17.48
:'58.49
41.~51
50.58
28. ~54
'-0.00
49.42
71.66
100.00
5.:1.2
27.80
6:l.06
It;:
:t"
T.EST
NUNBEf.:
'CEiS'T NIJI.IK{EA
-2 min grind
grind
-2
-)
-5 min float,
float, .1lb!t
.llb/t nine
p i n e oil
oil
77
THE
(~t'!D
CiF~("lPH I TE SF'LI
'THE 1'1AS!:>
tjAS!f; A
b I U GFtr7rF'I.iITE
S P L I T l<JAS
WAS
HEADS
AT
2.73
I.iE~RI~1'; 632.65
632 + 05 G
C.j
AT'
2 + 7 3 %C
XC . .
CONG
14.26
(2.25
(z ilt.! C:
14,26 G
G
( 2.25 %)
X ) AT
A T 75.12
75;+12 %C
%C
TAILS
TA:CL.S
MESH
618.39
6I.E;+39G
C;
(97.75
( 9 7 , 7 5 X)
X I AT
A1
G--CUr-i
G---CU1'i
[;-.. C 11
G .- C 1Ji.4
%
XLT
t~11
O.i8
99.B2
40.30
96.44
104.24
6.37
1!:'i.24
J.~:!(?:l.2
20+41
4:1.• 1. 2
6.!:'iO
GRAMS
%OT
1.06
XC
:L,O:i
Xi;
GRADE RECOVERY
t'lEADS
10.0
20.0
28.0
35.0
48.0
65.0
100.0
-100.0
100.63
11<;'.69
16.48
91
lB.92
:I.~i.
93.4~j
78.21
61.73
4:l.32
34.B2
-if]. 92
-0.00
0.,42
O.lD
5~)
1 -, ()9
2:1..79
30.27
3;,20
31t [33,
6.
cO C\
' Cl
~,)8
. . ) 0 . (,)0
3"
6!:) .lEl
5,,()9
BLOB
100.00
--'
r;,'~-)7
0.00
1.53
9.:LO
1 ~5 ~ 09
1.8.25
:LO.57
4.86
1,,20
"")
C;.r::"'
~'..• J,J
0,00
0.00
CONG
:to.o
0
28.0
::~O.
0.00
0.30
:L.BO
0.00
2. :I. ()
12.62
21.GB
2(7.17
18.30
35. ()
48.0
3.1.2
65.0
100.0
-100.0
2.61
1.23
1.04
8 HS3
10.0
20.0
28.0
35.0
48.0
1 • :L:I_
0.18
6.47
1:::;.30
j.01.12
:1.6.35
124.96
20.21
65.0
38.~J:I.
6.23
100.0
-100.0
9(1.40
1.:1.8.65
16.07
:1.9.19
4.l6
7.29
lOO.()()
97.90
85.27
63.:W
34. ~~2
0.00
2.10
14."73
36.61
6~.'i.
BB .• GO
87.42
B3.66
~)O. 96
6:'5.33
t)8.34
7B
15 • 9:~
7.29
0.00
84.08
92.71
70.03
68.37
100.00
42. :33
87.31
61..04
3().64
99.B2
0.18
0.42
1.04
1.t>O
100.00
61.18
49+04
TAILS
40.00
94.64
93. 3~:)
6.65
78.05
21.95
6 1 • 70
41. 49
3'8 • 30
:':,8. ~51
35.26
1?19
-0.()0
64.74
OO.B1
100.00
.
;.
1 + :~7
34~67
1.17
0.69
3:L.66
12.69
38 96
1.
b9.36
o • ~:;4
0.84
I
.
TE~3T
i·~l.JHnEF~
-no milling,
rnillirlg , float
-no
f l o a t with
w i t h .llb/t
. l l b / t pine
p i n c oil
oil
- s u c c e s s i v e conc
-successive
'-"1.'
1 - 2 , ,I 2-4
2 - L ,, 4-;.;
4-F, , vL6-16
conc for
f o r 0-1,
0-1, 1-2,.
- 16
•
n inn
8
~),
n'l"'
Y'
rrCONe.
liNe
.1\1.;
w
tlOO
--100
+:1.00
--100
Gr~ADE
t.JT
1.0.12
0.40.
:to B:L
0.13
i-:t!NC
2.03
+:1.00
l.. I
o • A-,J
--100
1. 75
+100
0.31.)'
.-~ 00
1. • ;:j:::~
CONC +1.00
--100
0.61
~j22. 00
C
III +100
."~i8 + ::~~]
-100
TOTAl(CONC)599.26
71.64
~:jn .1:::1
,~.~1. 97
·49.38
60.9B
r)I::'
~l
44.51
59. :::10
3:L • ::~:'"j
c;:1. .99
36. 4~j
1.10
1.30
3.15
GF;; (111 C
7 • 2~~j
0.23
1.16
0.06
1.24
0.11
1
.04
G R(.l 1"-1
T
GF;:rlt-1
CT
I:~[C
~JT
%I~:L:: C
l,jl
:.
,"",.I.
.
.
.**
10. ~'j2
7.4H
1.76
~'j:=:;'
40
f: t: C c
3 (I' • c:'J'i.
1.94
1.22
0.32
10.22
6. "17
9.68
~~ ~
1
~5~)
O.3D
12.01
7. l::J
10.90
2.11
1.:I.~:j
().3~.'i
1,1. • 1 :[
l' • (\ (?
9.30
2.14
:L. 1"7
0~36
~
6. :~o
9.46
27
6. ~.'iO
96.8::';
28
t
REC
;~c
60.47
0.:1.1
O.?:)
0.22
~5. 74
0.7(,)
~'j80 ~
<18.99)
1. 27
3"1.4'1
02. :~7)
<CJ5'J6)
']
'1
TEST Nl.JlvJnEr~
l-lT
jJNC ~igg
~ :~~
~ONC
-100
2.70
0.49
1JNC
~NC
J
d:lNC
+100
9
(H~r-1DE
B6.84
5"7+77
86.17
56.12
84.33
57.53
+100
2.84
-lOO
+100
0.59
2.67
B2.BO
-·100
1.21
+100
0.84
--100
0.98
49.93
61. 99
36.45
0.70
0.66
3.04
~IL +100
419.75
J
-'1001.56.18
'OTAl (CONC) 594. 3~:;
-4 min
min grind,
grind,
-4
f l o a t with
wi-th .11b/t
.llb/t pine
pine oil
oil
float
s u c c e s s i v e conc
c o n c for
f o r 0·-1,
0-1, 1-2,
1-2, 2-4,4-8.
2-4, 4-8,8-16
8-16 min
min
- successive
-
Gr~ {l t"l
C
4. :"j7
Gr~rlr1
T
Gf~(")li
r~EC
l,JT
~:j •
0:5
1. O~5
3.19
2.60
3.43
~{.I:~EC
\,JT
r;:EC
c
/.:c
rU~C
33.12
27.99
35.88
O. !"j4
17.32
14.41
18.47
2.73
0.58
18.62
15.15
19.4:':';
3.88
2.8J.
0.65
::~1.06
15+59
19.99
1.D2
0.88
0.31
9.8B
4.86
6.23
57!:";.93
3.97
96~90
0.49
2.33
0.27
2.39·
0.34
2.21
0.60
0.52
0.36
2.94
21.99
1.03
( 1i:1. 42)
<14.0(3)
I
1
CT
6.10
.
,
.
(78.01)
-8
grintl,
-8min
n
i n , float
f l o a t with
w i t h .1lb/t
. l l b / t nine
n i n e oil
oil '
-successive
cone
for
0-1,
1-2,
2-4,
4-8,
- s u c c e s s i v e conc f o r 0-1, 1 - 2 , 2-4, 4-8, 8-16,
8-16, min
min
TEST NUi'1fi[r~ :I. 0
GF~(lDE
f.~·~1 ~
94
T? ,:'0
6G.06
6B.B9
51.62
46.
O~'i
27.0c)
30.08
7.64
~.!B.
f.l2
0.40
0.61
3.38
C
G!~:tli-i
f:~ ~ ~.~6
GRAM I
GRAM CT REC WT %REC'WT
14.26
11.7B
2.29
51.33
f~EC
C
%C HL(
::=;() • o()
64. T
1:;.42
17.8;:;
8.48
9.00
2.59
2.9<)
3.52
:I. • 9 t;
:l + ~~8
0.73
:I. .05
O. 18
0.66
0.04
0.51.
1 .50
1.34
,
i
2.D7
1'0.~33
2.24
8.06
13.51
(27.7B)
(86.49)
CW.19)
]
TEST NUt·mEr~
.NUtWER 11
:L 1
TEST
]
WT
GRADE
12.39
72.97
'ILC
II ;.)
572.06
1.3B
JT(.IL
584.45
2.90
TEST
TEST NUtfBECR
NUHBEf-i: j.2
1. 2
WT
uc
rLS
GRADE
24.60
107"7.82
:1..61
1. :1.02.42
3.24
' -no
- n o milling,
a i l l i n g , 5j min
min float
float
~ollb/t
- , l l b / t pine
p i n e oil,
o i l , 20%
209; solids
solids
GRAM C
GRAM T ·GRAM CT REC WT XREC WI
REC C
%C REC
12.39
53+39
100.00
-9.04
97.G8
46.61
-no m
milling,
-no
illing,
5 min ffloat
loat
llb/t p
i n e ooil,
i l , 32% ssolids
olids
- ..1lb/t
pine
-
i
GRAM C
GRAM T
GRAM CT REC WT ZREC WT
REC C
%C REC
18.34
24.60
lH. ~14
51.39
100.00
97.77
40.6:1.
I
I
-no
-no milling,
m i l l i n g , 55 min
min float
float
-.llb/t
- , l l b / t Aeroflot65,
A e r o f l o t 6 5 , 20%solids
20%solids
I JT
HT
j.;4..00
~(-jILS
G R A M T'T
GRAM
,GRAT:lI,. GRAM
4
GRADE
C
71.74
10+04
,
.14+00
564.23
Gr-~At1
GRAH
CT
C;'T I~r.-:C
19EC
~JT
U'T'
10.0tl
:LO.O4
2.42
2.42
B.07
97.58
%REC
%Ftli:C;
m:c
Rf:C Cc xc
%[: m::c
1,;ELL"":
~·JT
1.J.T
45
55.45
1.00.00
j.00,OG
5~)·.
1.00.00
1.00 + 0 0
44.55
578.23
'J
-1
~I
'I'L:c;'T'
J
l.,
WT
GRADE
°
GRAM C
I" Lt"'
,.)
540.45
0.96
563.97
3.09
GHM1 T
:~ 3
52.09
O:ONC
,. "1
-no
-no milling,
m i l l i n g , 55 min
min float
float
_- .11b/t
. l l b / t pine
p i n e oil,
o i l , .21b/t
, 2 1 b / t fuel
f u e l oil
oil
NUMI:!EI~ 14
::5.19
.;
~j::!
540. 4~'j
GFd\11 CT
F~EC
l~T
.",'_.~,J
'') c'
4.17
5.19
95.8:5
1~)
%f~EC
(!J T
f~EC
C
70.25
:1.00.00
%C
HEL
100.00
29.75
1
-no m
milling,
-no
illing,
5 min ffloat
loat
-.llb/t
Aeroflot65,
.21b/t ffuel
-,
llb/t A
e r o f l o t 6 5 , .21b/t
u e l ooil
il
TEST NUI'mER 15
-1
I1
J.Il·JT
1'
:1 o:m~c
0 N C;
C;RAX:lE
Gf~()l)E
20t5'1
20.91
52.78
52.78
~ I.L' : )
]H
'C'
549.30
0.62
rOTAL
570.21
... • .... 1,:)
.... )
CGI:;;I~t1
~ I ~ AcC
M
GGF~M1
R A M -r'
T
;::m::c W'T
WT
f,EC IJT
lJT XI:ZEC:
CT RE(:
GRAH CT
G!:~'AM
11
404
11.04
204'91
20.91
1.1
11 *O:?
• O~~
3.67
3.67
41
54(/.30
3.41
96.33
~-}.
1100.00
00+00
C
F~EC c
REC
776.42
6+42
m:::c.
.xc
X C l::ri[.,
100.0r:LO040C
23. ::jB
J:,.- .'..,
]
I
,
.
0
I
"·'r:0~~1~~::·;t~--------------------------------
-------,.,.,
TEST
1.57'
LJT
21t70
21.70
INC +100
J.:LOO
bNC
l
-100
O
N
C
4-100
ONC +100
-100
-100
(INC
4-100
N~C +100
-100
-100
NC +100
$100
''I!.lNC
-100
-100
I-IIL +100
4.100
HlL
-1 00
-100
'I1
1
NW1DEF~
3.4'7
3.49
~
2.22~
0.53
0.53
30 1 5
3.15
0.78
0.78
2t40
2.40
1.27
1.27
379.56
379.56
:I. 65 * '35
:1.65.95
}TAL(~ONC)581.05
-4 min
grind,
.21b/t fuel
g r i n d , .llb/t
.llb/t pine
p i n e and .21b/t
f u e l oil
oil
- s u c c e s s i v e cone
conc for
f o r 0-1,
0-1, 1-2,2-4,
1-2, 2-4, 4-8
Lc-8,min
-successive
~in
1.0
GRADE
GfU'tDE
Gr~Ari
65tl.3
65.13
5 9 t 2:L
59.21
17.22
217.22
2
33 + 40
:n.40
14.13
2.07
0.38
o. Hl
9.
Y +~:j7
57
0.30
20 t o 1.
20.0t
6.71
6.71
32
24 ++ 3~~
O,:L6
0.16
0.42
0.42
3+27
3.27
0.16
0.16
0.31
0.61
0.70
C
WT
WT
ra~c
c
'16.20
4.34
70.88
85.30
%C REC
91 • :j(}
2.75
o. ~.'i6
0.4'7
7.74
2.95
3.16
3.9;-5
0.4b
O.bS
11.06
2.41
')
r:q
~._ • oJ ..,
3.67
0.47
0.63
10.33
2.47
2.66
545.~jl
1.:50
9:3.8D
2~j
(35.~)4)
'
GrMN ·CT HE::C
• :1.9
GHMi T
%f~EC
6.H"!
(93.13)
(17.69)
1
TEnT NLJi'il:H~F~ 19
WT
9.19
tNC +100
-100
0.85
+100
2.39
fNC
-100
0.50
ONC +100
2.27
-100
0.57
;!
.. 12
!H~C +100
-'100
1.34
AIL fl00 367.60
-100
100.95
.HALC CONe) 4B7. 78
j
GF~ADr:::
80.J.2
63.66
68.73
37.08
57.50
48.38
46. ~.iO
29.99
0.71
0.78
3. ::.~o
- s c r e e n e d at
at 28mesh,
Zarnesh, oversized
c l v e r s i z e d grou~.for
grourd. f o r 4 min
-screehed
-successive
- s u c c e s s i v e can
c o n for
f o r 0-1,
0 - 1 , 1-2,
1-2, 2-4,
2-4, 4-8 min
-.llb/t p
i n e oil
oil
-.11b/t
pine
R {\M
AM C
GI:;:
m::Mi T Gf~At'1 GT I:;;EC ~JT ;~f(EC t·JT HEC C XC F~EC
7.36
. ~j:?' • ~.~ 1
1.0.04
~~. 06
7.36
7.90
49.10
6:~. 23
0
54
o +• ~'i4
1.64
1.64
0
t :I.5'
O.t?
1,251
1.31
0
+ 25
0.28
0.PY
0.99
Ot40
0.40
2.89
1.83
0.59
1~:j.03
11.36
14.39
2.84
1..5B
o. ~)B
14.77
9.82
12.45
3.46
1. ::'{9'
0.71
17. <79
8.62
10.93
2
6 1 468. :::;5
:{.40
2.61
0
+79
0.79
(19.23) <12.70)
96.06
.
..
21.10
(7B.90)
•. • .. _.: :-:':::-:-1
•
• •• - • .
••• ~ < : ••
~:
"
... .
fb
. .: . . , .
t;I~.ii;;\
;:\<~: ·1:>.: ~;~;:~ ::. ,.... :... .....
:i
~':"'.
···~r--·~,-
......... 4,...
~.:;~ .. _ . _
:.. __ ',.
-
•
~
I
.~
..
..:-:
-.. :. ...
-,:'
_._--- .
- ..
~ .. "': -:.'::"""
,
;:-
.1
]
.J
]
1"\..
.'
:_.; . ~ .. -.::
.
:: '--
.. ~. -: .
..~.
SO
60
'70
.',
'.- ..
.......
_ .._.._ _ •.,_,._____..__••__________..;;....__,._________. ;,;·iI:;~:~ldlli··.'k
~.
:-- I~: ::~;'~1~'~'
......
,
';'k .. ",- -: ::"
'is' A6ta:tyJn ·:~i~(;r\e:..
',,\
. .• •.• •.~.~,.~. . . . .••..
.. . . . ,. ,.• :.;:cHiDI~.~·{;•. • :.£~.;"... •.. .~. ::. . .•
.
.....
- , ..
.'
. '. ~: .:.:~:. i; ~~ --'. ~ :~~~ ~ .; ~ ~~',
I
~
'11
'4
L.;7 ;'~:':~'.
•-:':-':'i.;:"::.
~.-.-~~--
F.:t~;~:::
r:::..:::
~:.:
f}!::~6
,v.
~:~;
~ :7':~::7:':
" :·.. :1"~:~
:. ~:~.:-.::~
)
]
..
_.. :.:~.:.. . ~~.~.:...:~.!.:..
.,
-'
-. '--'--"-'
__-:1
J
]
r.·! . -. .
'n'"
M..t •.
t
'I d· , .. , - ...
"~'!f-
..
~
L '[tf'! . 1.. _il.
\e~"-' ... " ! ......: "1.,, 1-'
. ..
~.
'·-.:;i :'
'
j :'. ~ : •
;
t" .. :~ . .
~:: ::; ~
:'1'"",)-.1.' [' ""- ",," "j J.,
... -
-.- ....- _.. -
a
• 1-'
"""-"
.• _
,,•
f • ~ ~.
•
\ •
: 1 ~~ • :, ':: .• :~:' r "
. . : ! ~: ~ '.: - ...
-l -.-' . .. - - -.-. --.--.
!
• '
.
~
"'-'--
• ; • -.
••
~.
.-.. -- .
fl?J9t,~pii ;;tti.01~ (n11()Y>·: ..
• • • .
. •• j • ~
: ~ , . , • •.
' . : ,"
: • : :'
_ •
~,-~
~:, ~
8
:: I"" d
T' 'd -,- 'l"-~""'" ...... - .......... i
, . . .. - .
... ,;";-;-:.i7
,-, ..
f··
.
,~.-
,! L." ..
•• : .
';'::,;
,
. -.
~
Q
[]
,t
I]
'1]
I]
(
1]
:IJ
'!J
:~:
fJ
U
"'"
a
'1·
1
]
'"
,• '
. qc .
,
i
),.
.
.,
,
.,
- .
-
.
'.",
~:'1:':;'>~;'!~;;:'~,:~-, ;1
;:n~
...:,..
. . 0,,0,.
,,'
........... , . • "
r.:
''',.f.','>
.:,,::>'I)}
".
•. ,
'.':--'- .: ...... -:"_ .. ;-.:- .. -..
~f;< ::::
-::~. - .. '::~,,'
'-(I'-(~ c<-- ~j~icC:~j X/'!li! '00 r'Wll,!~r"2~-li: .~~ f!t>C ji m~
.. ..
'
~~
,"
..:..
"'.-.
: ,~:,~_;_:',:._.~:~ .;.~.·-._.:r· -.~: -: : ~ .~: :~;~~~~:~{>~-:
.. .... •.... . .... . . _ _ . : _:...........::.;,.•. . •.
.. _". .,•
.._C __:...·.
~
-
"
-':-'-:-:-::::-:-::-:-.: --~ .. _--'
- _........- _---.
.. .
-
......
. .- . . -. -- -
--.~-.--.--
.
....,.. ..
~~ ... ::;
:~:: ~
...
,-' .
~-
!
~~.
, ..
_........
_..
,- t-· -
.
:~:~~: .. ;
.. :;:~;:;:~::~ .. ~
~
..
.1,'
-
.--:-::~::::..::-:
-:-.;
'or----:-~-;;-d.-.----'~tl_f-;-::---:-,.. ·-,--------;:;;e--~~~~~~~...:..:.-~. ----::..-:;:...·..:
."
.: ltD '.
rloto....ifon.
- --, . - .
~
. .....
.. --
.
.'
~._~
... ,-._.
1\me..
-. -. ....
.-...:. .... -_.
__ ..-.:..
----:..~.
-~
. . -- . .-...
.
~ .... ~'~: :~~:~: ;~~; ~~:
~
... . , .........
-.';: ;~:~~
.....
::. : ..::
~
'
;. -.' :
..
" J(;)
....
JyO
- -.,
~.-
:70
~~~:'OO~,*, Ftri-~t\()(, ~'OD(~;' C
..
.-
..
-~.------~-.-
-
.
-
~
':
ri:: I'~'I ~.~ i~~~; ;f~::;rI::', ::-. :~~::,
'
.'
. "'.'.'
,.
:~:~;:!.~.r: 0" ': ::'.,
':.
j
' ....
')<'
!.iihel1--t i.' -_.~tb~r ~{y('1e ~u. =Q2-,~~~tcj,~(~I~l_~J-C"(:ff
." ..
~
':'
.,
<'t1-;t~,/ '11-:.15:,: :-5 mJllu.te. flCvl
-:.> .....
.... ··.. ·::~::::~:~::t:·:~~;:~::~::::~. . ·' ........... __.. .
'1
""'!':'
<:::; t '1 . ~:,
'.
j' ::.;:
.. .:. ::':-~'.-.:~~~.:; ~ .;.~: :-:': j: :-~ '::~ ~~ t:: :~: :':: ~:; ~~.'~~.~:
.::::'::~ ~~~ ~~. ~ ~~~ ~~ :_~~.~.~ ~~.L1 ~ 0i.~~ tI; .~j~.~~:·i~:~it;
EL~. :.~'_~~:. \~.~ . ~. :.
...... ... ,'".
j"
·:.i:
,
.
~.'
:;""~~:.:(
_
..
,
.';;:::;1':::;.:::
"'_ .. ~". __ ..
'
-.
30,
'10
fleCG\leB
.
,
~.
:.::
....
-'
..
Yo
--,
·-::-.--. '.1
••••
: - - - - - . '1
._--_._-.!
.__, '.,. ..-..
(
~ ~.:
-..--... ... ..... .
, : : : ,. • :
,~
~.
~.
:.
I
,
"
;:~;:: :'::;:1 ;'~;);: r:'~ ~
.,'
.
.. '
.1:
"
:,
"'
'.',.,
, !
><; ",: .{i'L1r~18 ~ .'~Gl~QG.~k","=,~.:1£~~~"'Tt-
'..
.~,
.. :..
-'
"
.J0
•• I ~ ••
r',
,...
~,
.
i:
-.
.•
,.1.
- ..-.
.
~
..... 4
,... ;;;, ··,·8
I.,·· -
.,,;'-
I,';
•
-,I·'
I"
.:.!
i'!~'
:1'
:':~I:,:I;t':~~;
:(;.';:;:jl!jjlij;i!~r:ii!li.':j.I.;I'~~!I!;lil'I~'!';(.,ir,~j··'I!'!'I!:'~;IIII~I'rl'nl!::!..ltl~jil:~;:t!!i!'Ijl\tl:;l.l::I;:i:.!:r:;;:il:~;J;::~t:,
.• i , . i i " . I.
\).
1"'-:
•
.
~
:
,.
~
,
~
I
,
od
o~.(~ ..
r
.;
5.
tl
o ~
r.'"li
'-
,~
.~
.
. ~
() 8·
\.!d' .:.....
r'
'~'.
~. ~
o
~
:j
~.
;.,;-
',,"
.
}:
o
;
c.<)
... ,
~
()
~
...
i.
'j
t1.'!.... -..
I
'0'::\::::';: ;.:;:. ~ \ .' .:. d;l;:::";: (').: ::";:1. ~;'.... ~; o· :.: .:;: ....•. :, ... '"' .. : .
. ~ .••• ·.. l .... ·i" "':[1\-·"··_·····
." 'I'''''' · .... ·'0 "I"';j .". ~~.~ ...
...l ......~ ...... 'J ....
~:~~~ 1·; 1,i';:\T!~'~-~ [r :{~~.~ !-; f{: ;~J'-~ '1-:; '\...\):: ~_.~.; ,:.; --;;'p" ;.;...,.:..; ~~1~J~~':'~':i ~~~:.~lt;·:~1
7ti!~~~:r;c'j ~:f~:r~-r~:t·:
~
1
i,C'\ , .. :. ;:~'!; .:: :,~. L'A:;:j:;;; "'~:: I .;
1
.• d.,,;
!.", .'., l " " ;
.
'4/";" J~llJ·
r
'(J;I.J.."
~
0 ' : ' ,./,'
Jj •• 1.."""1.
N.::
11 ............. '-, ,.. ,," -' .' ...... .
·;J:Jl.:~·.L:H ',(; I~~:.~,:·::~ ,~?:,~.:·:,L ;~~·~:.:~.t:~.~~; .\.,~, !J.:..~', ;.~.,j,;.;:~;.:...'~:.~~ ,~:tl-bI:t:.1:L~j.1·;jJJ.:_2:~1~,i·i..;~18!:::j,~:.:: t~~ :.:.~:
,,,.i , •.1 ,
.., •. :,
"
"
.
.
.
..
.
~ ~Gfu-p·r'lIC:f·q:K.hon " Ruv,;cnJ SeC c.:r· ~ L~:; n';~~~~
. ..... ,
o
,
. '.
,..
~
,. .
... ,
\
.
...... .!,
~
•~ ,
.
• • • • • , T' • •
~
.
•••• -' •
,
:.:....:. .. ~~~:':':":":·-:._i
: I : . : :~ ~ :_ . :
. _•: ~
~l~Y:~::~~_f~::~~'- ~
•
.-'~
--
__
....... !
.-- • _ _
_ _ _ tL-o. _ '_ .. _ - _
\
"
'-'
'
-:cfF----===~;-.:~·:::...-::-::":-::"',
6c:;?('(&~ ':QL)'({:~o_~~L~'\C_'~ft6L
-_ .. :-,;;::;,,-::;:;';::= ' :
----
--
-
: __ ~ :, aUYl ' tV
O:}
(Zu;'\.' ,L0lo) ,',
l
:!
i
\
\
..
~--!
I ..
- .
'.....
..
:
.\1 ......
1r;
~::~
'\
\",
..... .
.. ::: ;<':;'
I
I.
I'
, I ~
i
I'
!
r
. (..II·j~PIII\{:' ")i.~.j-IP(~JII
r'l1'\l(LJ..lw..L.
.::•. :;'.: (tl,.!..!i...-.gj..Ll ;- C _.r-\;
.
_ _""::: ~._~ . . . _
.~~
.>:~"
__
(tl~)
.. .
~
~
. - ...
_
_
__ ._
_
~
.;cZUYl.v;, (0 '-:'"
'-,
G c.. ncj
"_.
..... '-:',;
. . .,
_
•• _~~_,
.. ::
_ _ . . . . . M ... _~ . .
(f® GEOPHYSI:S~::: !!J!1~J!ll!! 1J~"II"~~1I1II
GEoPHYSICAL - GEoL'
TECHNICAL DD
TECHNICAL
Ontario.
Ontario
3
1 E 1 1 NEB0 14 2.3509 W T T
L
-
SHOWNHERE
HERENEED NOT BE REPEATED IN REPORT
FFACTS
ACTS SHOWN
TECHNICALREPORT
REPORT.MUST
MUSTCONTAIN
CONTAININTERPRETATION, CONCLUSIONS ETC.
TECHNICAL
Benef i c ia_t_i_o_n_S_t_u_d_i_e_s
a t i o n S t u d i e_
s _ _ _ _ _ _~
T pe of Sut~ey(s) _ _B_e_n_e_f_1._·c_1._·
T wnship
J. McVittie
McVittie
J.
Su vey Company
McGill Univ.
Univ. &6 P.
P.G.
Lacombe && Assoc.
Assoc.
McGill
G. Lacombe
A thorofReport
of Report___~D~o~n~n~a~M~·=in~g~J..~·e~
Donna Minnie ___________________
..
of AiAuthor
McGill Univ
Montreal..-'<.Qu~e~.
Que.H3A
2A7
Ad ress of
u tho r _--"Mc=:c:::.:G::.::i::.::le.::l::.......oU'
;n""i'-"v..........-"-'M""o""n""'t.=.r~e""'a.=l.1.,
H""3~A,,,,"··-,2~A~7!-,...;_
i
(linecutting
(linecuttingtotooffice)
office)
---Total
Miles
of
Line
Gut
______________________
-..-.;..
Total Miles of Line Cut
SPECIAL RROVISIONS
CREDITS REQUESTED
ENTER40.days
40 days (includes
(includes
ENTER
line
cutting)
for
first
line cutting)
for first
-,
survey.
survey.
ENTER 20
20 days
days for
for each
each
ENTER
additional survey
survey using
using
additional
samegrid.
grid.
same
, MINING
MINING LANDS
LANDS SECTION
SECTION
I
MINING
MININGCLAIMS
CLAIMSTRAVERSED
TRAVERSED
List
Listnumeric:ally
numerically
I
EO
EO 514798
514798
............................................................
..............
(p;;f;~)"""""""""'" (~:;~b~~i' ....... .
(prefix)
(number)
c i 17nn
••••••••• ]j:Q•• 2}..47.~~ ............."....................... .
rm
I
-
,
....•.... ~Q .. ~).~~Q~ ..................................... .
.•••••... ER .. !U,,!iQtiQ ........................:.............. .
.
~
Geophysical
Geophysical
......... EQ.. JJ.~QQ1 ..•..•..••.••• "............... :....... ~
DAYS
per
perclaim
claim
--Electromagnetic
Electromagnetic _ _ __
-Magnetometer
-Magnetometer _ _ _ __
-Radiometric
-Radiometric-Other_ _---.,-_...16J.1.0.L-_ __
II
.
...... ~ .. EQ .. !il~QfiZ ...............,. ......................
i=
..................................................................... ]..
~
C
"""!
.~
Geological
Geological_ _ _ _ _ __
Geochemical
AIRBORNE
(Special
(Specialprovision
provisioncredits
creditsdo
donot
notapply
applyto
toairborne
airbornesurveys)
surveys)
AIRBORNE CREDITS
CREDITS
I
Magnetometer,-:,
Magnetometer _ _ _ Electromagnetic
Electromagnetic _ _ _ Radiometric
Radiometric - - - (enter
(enterdays
daysper
p aclaim)
claim)
May 30, 1980
DATE:
DATE: May 30. 1980
OCT 201980
........ J~Q .. ?}.~~QQ .....................................,
NOV. 1979
1979 to
t o April
A p r i l 1980
1980
Co
Co ering
eringDates
Datesof
of Survey
Survey Nov.
I SPECIAL & ~ O V I S I O ~
I CREDITS REQUESTED-
\
I
m&mRlltt_
~~~_---IB::u.!Ju.tJ..t
H. Barry _ _ _ _ _ _ _~_ _ __
Cl im Holder{s) _ _--=:H:.:.~Ba::::.r:::..:r~y1_
II
988
900
r---------'--------,
--------Ioo-!WFC F. , ~l" ;··/0
TOBE
BEATTACHED
ATTACHEDAS
ASAN APPENDIX TO TECHNICAL REPORT
TO
I
a- ·e
IorH
Q
..... d",..~
-SIGNATURE~'"
SIGNATURE: Author
Agent
Authorof
of Report
Reportor
Agent
............................................. .......................
,
,
..........., ............................... ........ ............. .
.,.
,
I
1
............................................................
····························t············
. ·........ .... ... -.. .
!I
............................\1...................................
.....................................
............................
-~
~-~
1
······· . ····················1·························......... ..
............................1....................................
Qualifications
_
_
_
Res.
Geol._~
_
_
_
_
Res. Geol.
-Qualifications
-.......
" .........................................................
..................................................................
Previous Surveys
Surveis
Previous
Claim
File No,
No.
Type
Date
Claim Holder
Holder
Date
............................................. , ....................... .
File
'rype
..................................................................
..................
····i············ ........................................................................ ....................................................................
..............................................................................................................
...................................... ... .......... ......... .
......................................................................................
.......
.................................................... ......................
..................
.....\....................................................................................
..............................................................................................................
.................................... ....... ............................. .
.................
.......... .. ·· . t··!.....................................................................................
. . ......................................................................................... ...................................................................
........................
.............................................................................................................
!
r
............................ 1\ .................................. ..
I
'
"
"
............ ...... .. ...1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ........ , .. , ............................. , ., ... .
'
!
',
,
-
:: ::::::::::::: ::: :::: :1::::::::::: :::: ::::::::::::: :: ::::::::::::: :::::: ::~: ::::::::::::::::: :::::::::::: ~--------------------------~
TOTAL
TOTAL CLAIMS_
C I A A I M S-7!.....-,
7 ___
* _----- -,-----.....
4-
I
837 (5179)
GEOCHEMICAL
GEOCHEMICALSURVEY
SURVEY --PROCEDURE
PROCEDURE RECORD
RECORD
I
(.~.'
~
.
.
-
,
NNumbers
umbers Of
'4..::.8..::.0c3:..z.,---=E-=O---=:.
1.::.5.:::.0-=6.::::0..z.,~E.:::.O~5=-1.::.5~0~62i=EO -514803,
EO 5.=515060,
EO 51506b ___________
of claims
claimsfrom
fromwhich
which samples
samplestaken_---=E:..;:.O---=5-=1'
taken
Total
ulJ1.ber of
TotalNNudber
of Samples
Samples_ _ _ _3~
3 _ _ _ _ _ _ __
Typeof
of S~mple--.::::B.::::U=-lko=--------------­
Sample
Bulk
Type
(Natureof
ofMateriill)
Material)
(Nature
100
loo pounds
pounds
Hand collected
c o l l e c t e d from
f rorn pits
pits
Method
hilethodof
ofCollection
Collection Hand
blasted
at selected locations
l
i
-
"ANALYTICAfL METHODS
I
Values
Values expressed
expressed in:
in:
Horizon
Horizon Df:!velopment_--..:N~A~
Development
NA _ _ _ _ _ _ _~_ _
S u r f a c e . on
on rock
r o c k outcrops
outcrops
ample Depth
darrrple
Depth Surface.
I
!Xl
El
0
0
(
Cu,
Cu, Pb,
Pb, Zn,
Zn, Ni,
Ni, Co.
Co. Ag,
Ag, Mo,
klo, As,-(circle)
AS,-(circle)
W b o n ___________
Others_~G~r~a~pnb~1~·t~i~c~C~a~*Tb~o~nll-
Others-tir
Field
Field Analysis
Analysis ((._ _ _ _-rl_______--tests)
tests)
i.
Extraction
Ext action Method
Method_ _.c-I _ _ _ _ _ _ _ _ _ ____
Ana!Iytical
AnallyticalMethod
Method_ _ _ _ _ _ , - - - - - - Reagents
Reagents Used
Used________________
Hilly
Hilly
Terrain
: per
per cent
cent
P. P. m.
p.p.m.
1 p.p.b.
P. P- b-
Average
AverageSample
SampleWeight
Weight
Soil
SoilHoriz<,>n
Horizon Sampled_---'No!.!A~
Sampled
NA _ _ _ _ _ _ _ _ _ __
II
1
rainage Qevelopment
NA.o._ _ _ _ _ _ _ _ _ __
?)rainage
Development_ _.I.lNA
stimated Range
Estimated
Range of
of Overburden
OverburdenThickness
Thickness_ _ _ _~_
1 0 feet
feet
,00 -- 10
Field
Field Laboratory
Laboratory Analysis
Analysis
_
_
_
_ _ _ _ _ _,_ _ _ _ _ tests)
No.
No. ((tests)
Ext~action
Extraction Method
Method_ _ _ _ _ _ _- - - - - I
Analytical
Andytical Method
Method_ _ _ _ _ _ _ _ _ _ _~
I
Reagents
Reagents Used
Used_ _ _ _ _ _ _ _ _ _ _ _ _ __
SAMPLE PREPARATION
PREPARATION
SAMPLE
(Includes drying,
drying, screening,
screening, crushing,
crushing, ashing)
ashing)
~Includes
analvsisesh size
size qf
of fraction
fraction used
used for
for analysis
esh
-1/4 inch
i n c h-1/4
Approx.
100
Commercial
__ ~100
_
_ _ _ tests)
L,aboratory (,_--"-~
( Approx.
Commercial Laboratory
tests)
Metri
Lab,
M
o
n
t
r
e
a
l , Que.
Que.
Name
Name of
of Laboratory
ILaboratoi-y Metri Lab. Montreal,
Vesuvius Crucible,
C r u c i b l e .- Pgh.,
Pgh..
Pa
Vesuvius
- Pa
Extraction
Extraction Method
Method_ _ _ _ _ _,~_ _ _ _ __
LO1
Analytical
_________
Analytical Method
Method____L_O_I
Reagents
Reagents Used
Used________________
-
C o n c e n t r a t i o n and
and recovery
recovery
General Concentration
Sample crushed
c r u s h e d to
t o -1/4
-1/4 inch,
i n c h , riffled
riffled
Generalpample
lenera)
enera
_ _ _--=m:::e:::tallurgical
t e s t s to
t o determine
determine
m et a l l u r g i c a l tests
l nndd cut
c:t
t o 600
600 ge samples.
samples. Samples
S a m ~ l e sat
a t -1/4
-114 inch,
inch.
to
-
41/4
i n c h and
and ground
ground in
i n rod
r o d mill.
m i l l . Slurry
Slurrv
11/4
inc~
1 .
,,
'
g r i n d time
t i m e and
and flotation
flotation
d e n s i t y , r e a g e n t , grind
density,ireag1nt,
•
i
I
t i m e wer~
w e r e varied.
varied.
tlme
I
mesh material.
matkrial.
mesh
Assays run
r u n on
on
Assays
and -100
-100
++ and
CL--
Be.onomie. potential.
~ m t i a ! . . Quality
quality
t e s t i n g of
of flake
f l a k e for
f o r erucible
crucible
testing
production.
production.