Variational Principles and Conservation Conditions in Volterra's Ecology and in Urban Relative Dynamics Dendrinos, D.S. and Sonis, M. IIASA Collaborative Paper November 1984 Dendrinos, D.S. and Sonis, M. (1984) Variational Principles and Conservation Conditions in Volterra's Ecology and in Urban Relative Dynamics. IIASA Collaborative Paper. IIASA, Laxenburg, Austria, CP-84-049 Copyright © November 1984 by the author(s). http://pure.iiasa.ac.at/2528/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] NOT FOR QUOTATION WITEOCT PERMISSION OF THE AUTHOR VARIATIONAL PRINCIPLES AND CONSERVATION CONDITIONS I N VOLTERRA'S ECOLOGY AND I N URBAN RELATIVE DYNAMICS* D i m i t r i o s S. Dendrinos** I d i c h a e l S o n i s ** * November 1984 CP-84-49 Contribution t o the MetropoZitan Study: 14 * P a p e r p r e s e n t e d a t t h e Second World C o n g r e s s of t h e Regional Science Association, J u n e 1984. Rotterdam, Netherlands - * * D i m i t r i o s S. D e n d r i n o s ***Michael S o n i s P r o f e s s o r o f Urban P l a n n i n g Associate Professor of The U n i v e r s i t y of Kansas Geography Lawrence, Kansas 66045 Bar-Illan University USA 52-100 Ramat-Gan - ISRAEL Funding from t h e N a t i o n a l Science Foundation under C o n t r a c t #SES-821-6620 i s g r a t e f u l l y acknowledged. P a r t o f t h i s work was done while a t University of Kansas a s V i s i t i n g F o r e i g n Distinguished Scholar, S e p t . 1 5 - 0 c t . 1 5 , 1983 u n d e r t h e S p o n s o r s h i p o f t h e MidAmerica S t a t e U n i v e r s i t i e s Association. C o Z Z a b o r a t i v e P a p e r s r e p o r t w o r k T w h i c h h a s n o t been performed s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s a n d w h i c h h a s r e c e i v e d o n l y l i m i t e d review. V i e w s or o p i n i o n s expressed h e r e i n do n o t necessarily r e p r e s e n t t h o s e of t h e I n s t i t u t e , i t s N a t i o n a l Member O r g a n i z a t i o n s , or o t h e r o r g a n i z a t i o n s s u p p o r t i n g t h e work. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, A u s t r i a CONTRIBUTIONS TO THE METROPOLITAN STUDY: Anas, A. a n d L.S. Duann ( 1 9 8 3 ) Dynamic F o r e c a s t i n g o f T r a v e l Demand. C o l l a b o r a t i v e P a p e r , CP-83-45. I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s ( IIASA) , A-2361 Laxenburg, A u s t r i a . Castis J. (1983) Emergent N o v e l t y and t h e M o d e l i n g o f S p a t i a l Processes. R e s e a r c h R e p o r t , RR-83-27. IIASA, Laxenburg, A u s t r i a . L e s s e , P.F. ( 1 9 8 3 ) The S t a t i s t i c a l D y n a m i c s o f Socio-Economic Systems. C o l l a b o r a t i v e P a p e r , CP-83-51. IIASA, Laxenburg, A u s t r i a . Haag, G . a n d W. W e i d l i c h ( 1 9 8 3 ) An E v a l u a b l e T h e o r y C o l l a b o r a t i v e Paper, of a C l a s s o f M i g r a t i g n Problems. IIASA, Laxenburg, A u s t r i a . CP-83-58. N i j k a m p , P . a n d U. S c h u b e r t ( 1 9 8 3 ) S t r u c t u r a l Change i n Urban Systems. C o l l a b o r a t i v e P a p e r , CP-83-57. IIASA, Laxenburg, A u s t r i a . Leonardi , G. (1983) T r a n s i e n t and A s y m p t o t i c B e h a v i o r o f a R a n d o m - U t i l i t y Based S t o c h a s t i c Search Process i n C o n t i n o u s Space a n d T i m e . W o r k i n g P a p e r , WP-83-108. IIASA, Laxenburg, A u s t r i a . F u j i t a , .M. (1984) The S p a t i a l G r o w t h o f T o k y o M e t r o p o l i t a n Area. C o l l a b o r a t i v e P a p e r , CP-84-03. IIASA, Laxenburg, A u s t r i a . A n d e r s s o n , A.E. a n d B. J o h a n s s o n ( 1 9 8 4 ) Knowledge I n t e n s i t y and P r o d u c t C y c l e s i n M e t r o p o l i t a n Regions. W o r k i n g P a p e r , WP-84-13. IIASA, Laxenburg, A u s t r i a . J o h a n s s o n , B. a n d P. N i j k a m p ( 1 9 8 4 ) Analysis o f Episodes i n Urban E v e n t H i s t o r i e s . Working Paper, WP-84-75. IIASA, L a x e n b u r g , A u s t r i a . W i l s o n , A.G. (1984) T r a n s p o r t and t h e E v o l u t i o n o f Urban S p a t i a l S t r u c t u r e . C o l l a b o r a t i v e Paper, CP-84-41. IIASA, L a x e n b u r g , A u s t r i a. Anas, A. (1984) The c o m b i n e d E q u i l i b r i u m o f T r a v e l Networks and R e s i d e n t i a l L o c a t i o n Markets. C o l l a b o r a t i v e P a p e r , CP-84-42. IIASA, L a x e n b u r g , Austria. B a t t e n , D., P. N e w t o n a n d J. Roy ( 1 9 8 4 ) Nested Dynamics o f M e t r o p o l i t a n P r o c e s s e s a n d P o l i c i e s Melbourne. C o l l a b o r a t i v e P a p e r , CP-84-47. IIASA, L a x e n b u r g , A u s t r i a. - (1984) N e s t e d Dynamics o f M e t r o p o l i t a n M a c k e t t , R.L. Leeds. C o l l a b o r a t i v e Paper, Processes and P o l i c i e s CP-84-48. IIASA; L a x e n b u r g , A u s t r i a . - 14. D e n d r i n o s , D.S. a n d M. S o n i s ( 1 9 8 4 ) V a r i a t i o n a l P r i n c i p l e s a n d C o n s e r v a t i o n C o n d i t i o n s in V o l t e r r a ' s E c o l o g y a n d in U r b a n R e l a t i v e D y n a m i c s . C o l l a b o r a t i v e Paper, CP-84-49. IIASA, Laxenburg, Austria. 15. (1984) The Changing Economic Structure of B a t t e n , D. M e t r o p o l i t a n Regions: A P r e l i m i n a r y C o m p a r a t i v e Analysis.. C o l l a b o r a t i v e P a p e r , CP-84-50. I IASA, L a x e n b u r g , A u s t r i a . FOREWORD The M e t r o p o l i t a n Development P r o j e c t was i n i t i a t e d i n 1983 a s a c o l l a b o r a t i v e s t u d y . I n 1984 e f f o r t s have been c o n c e n t r a t e d o n c r e a t i n g a m e t h o d o l o g i c a l b a s i s f o r a more focused r e s e a r c h phase s t a r t i n g i n 1985. One o f t h e p r i o r i t i e s i s t o a n a l y z e t h e s p a t i a l dynamics of i n t e r a c t i n g populations. This papaer c o n t a i n s an a p p l i c a t i o n of V o l t e r r a ' s e c o l o g i c a l model t o t h e i s s u e o f i n t e r u r b a n p o p u l a t i o n inoveraents. I n t h e paper it is argued t h a t t h e Volterra p a r a d i g m i s u s e f u l a l s o f o r r a o d e l l i ng o f human p o p u l a t i o n s . The i s s u e of f a s t u r b a n g r o w t h and d e c l i n e i s a n a l y z e d w i t h i n t h i s framework. i k e E. Andersson Leader Regional I s s u e s P r o j e c t November 1 9 8 4 ABSTRACT From a n a n a l y t i c a l v i e w p o i n t , V o l t e r r a ' s v a r i a t i o n a l p r i n c i p l e s and t h e i r associated absolute integrands growth in single conditions in and the multiple field of species interaction mathematical under ecology are r e c o n s i d e r e d and s i m p l i f i e d . They a r e t h e n compared w i t h t h e c o n s e r v a t i o n conditions to found appropriate hold r e l a t i v e growth i n u r b a n a n a l y s i s . integrands of geographical in a class of dynamic problems of The comparison a s s i s t s i n i n t e r p r e t i n g t h e (spatial) associations as a "stationary effort f i t n e s s f u n c t i o n " a s s o c i a t e d w i t h a c u m u l a t i v e e n t r o p y measure of t h e r e l a t i v e u r b a n dynamic s p a t i a l d i s t r i b u t i o n s . From a s u b s t a n t i v e v i e w p o i n t , t h e p a p e r shows t h e t h e o r e t i c a l c o n d i t i o n s , which would r e s u l t i n a l l s p a t i a l a c t i v i t y t o be c o n c e n t r a t e d i n t o a s i n g l e p o i n t , s o t h a t i n f e r e n c e s c a n be made r e g a r d i n g t h e c o n d i t i o n s u n d e r which t h e activity will disperse. It a l s o d e m o n s t r a t e s t h a t assuming a p a r t i c u l a r problem f o r m u l a t i o n , i n t h i s c a s e a r e l a t i v e dynamic framework i n a n i n a c t i v e environment, w i l l r e s u l t i n o b t a i n i n g s p a t i a l c o m p e t i t i v e e x c u l s i o n . d e n o n s t r a t e d i n a p a r s i m o n i o u s manner. - vii - This is f ntroduct ion Mathematical ecology a s s o c i a t i o n s have formalizations been s t e a d i l y making of urban inroads and regional spatial i n t o geographical analysis d u r i n g t h e p a s t f i v e y e a r s , Dendrinos [ 2 ] , Curry [ I ] , Dendrinos and M u l l a l l y [ 3 ] , S o n i s [ l o ] , and o t h e r s . T h i s r e c e n t work s u p p o r t s t h e argument t h a t w e l l e s t a b l i s h e d e c o l o g i c a l i n t e r a c t i o n s c a n p r o v i d e new and r i c h i n s i g h t s i n t o t h e dynamic i n t e r d e p e n d e n c i e s of a broad c l a s s of g e o g r a p h i c a l systems. C e n t r a l t o t h i s work i s t h e r o l e , d e r i v a t i o n and i n t e r p r e t i t i o n of t h e v a r i a t i o n a l p r i n c i p l e s and c o r r e s p o n d i n g " f i t n e s s " f u n c t i o n s which g i v e rise (or underlie) systems. the particular dynamics governing the evolution of such S i n c e t h e e a r l y developmental s t a g e s of t h e f i e l d of m a t h e m a t i c a l e c o l o g y t h e q u e s t f o r t h e s e g o v e r n i n g f u n c t i o n s was viewed a s a n e s s e n t i a l Although t h e i n t e r e s t i n s u c h a q u e s t i o n h a s s u b s i d e d s i n c e t h e element. e a r l y work by V o l t e r r a on t h i s t o p i c , found i n Scudo and Z i e g l e r [ 8 ] , its import h a s n o t deminished. V o l t e r r a was a b l e t o d e r i v e d i f f e r e n t i a l e q u a t i o n s of a b s o l u t e growth p o p u l a t i o n dynamics of e c o l o g i c a l a s s o c i a t i o n s as s o l u t i o n of p r i n c i p l e s s i m i l a r t o t h o s e of c l a s s i c a l mechanics. variational Moreover, V o l t e r r a g a v e t h r e e d i f f e r e n t forms of t h e s e p r i n c i p l e s : t h e p r i n c i p l e o f " l e a s t a c t i o n " f o r onespecies population growth;' the principle of "stationary action" and p r i n c i p l e of " l e a s t v i t a l a c t i o n " f o r m u l t i s p e c i e s e c o l o g i c a l dynamics. He drew from M a u p e r t u i s ' n o t i o n of " q u a n t i t y of a c t i o n " and i t s u s e by D e s c a r t e s (with the kinetic principle energy) on of momentum) and by L e i b n i t z the integrals of (with dynamic e q u a t i o n s . the principle Volterra's of main r e s u l t , however, emerged t h r o u g h t h e u s e of H a m i l t o n ' s p r i n c i p l e of s t a t i o n a r y a c t i o n reducing t h e b i o l o g i c a l a s s o c i a t i o n s ( t h e dynamic e q u a t i o n s ) t o t h e mechanics ( k i n e t i c s ) of a branch of problems i n t h e c a l c u l u s of v a r i a t i o n s . A n a l y t i c a l l y , V o l t e r r a showed how t h e t r a j e c t o r i e s i n t h e s p a c e of s t a t e s of e c o l o g i c a l a s s o c i a t i o n s (which d e s c r i b e how t h e system e v o l v e s o v e r t i m e ) c a n b e found as functions the stationary value f o r a ( e x t r e m a l s ) which g i v e c e r t a i n i n t e g r a l ; i.e., t h e e x t r e m a l s X a r e t h e s o l u t i o n of t h e v a r i a t i o n a l problem: when X i s a s t a t e v a r i a b l e , T i s a t i m e h o r i z o n and d o t s t a n d s f o r t i m e A s p e c i a l c h o i c e of t h e i n t e g r a n d I allowed him t o d e r i v e t h e derivative. e q u a t i o n s of m o t i o n i n e c o l o g i c a l dynamics . f o r a s i n g l e s p e c i e s , logistic growth, ecology. I n t h i s c a s e t h e i n t e g r a l (0.1) o b t a i n s a minimum. Further, he was d e r i v e more g e n e r a l able to formulations of governing integrands r e g a r d i n g t h e dynamics of a g e n e r a l c l a s s of c o n s e r v a t i v e , m u l t i p l e s p e c i e s ecological associations under absolute growth. Moreover, under c o n d i t i o n s t o be d i s c u s s e d l a t e r , V o l t e r r a d e r i v e d t h e p r i n c i p l e of v i t a l action.* certain "least A l l d e r i v a t i o n s a r e d e s c r i b e d i n P a r t I of t h i s paper. V o l t e r r a d e f i n e d c o n s e r v a t i v e e c o l o g i c a l a s s o c i a t i o n s p r e t t y much l i k e i n classical mechanics: manner t h e t o t a l i n t e r a c t i o n among s p e c i e s i s b a l a n c e d i n a t h a t r e s u l t s i n t h e v a l u e of t h e t o t a l i n t e r a c t i o n t o equal zero. E c o l o g i s t s d i d n o t e x t e n d V o l t e r r a ' s work i n t h e f o l l o w i n g decades. disatisfied by the peculiar conditions s t a b i l i t y p r o p e r t i e s of V o l t e r r a ' s associated with c o n s e r v a t i v e systems. the They w e r e e x i s t e n c e and This, coupled w i t h t h e i r a l m o s t e x c l u s i v e i n t e r e s t i n a b s o l u t e growth dynamics, d i d n o t p r o v i d e mathenatical ecologists conservative systems or the opportunity relative growth to search dynamics for where other the kinds of existence p r o p e r t i e s of t h e e q u i l i b r i u m a r e n o t a s u n r e a s o n a b l e o r r e s t r i c t i v e as t h e o r i g i n a l Volterra formulations. Although a b s o l u t e growth c o n s e r v a t i v e dynamic systems may be of l i t t l e importance f o r dynamic s p a t i a l a n a l y s i s i n r e g i o n a l s c i e n c e , r e l a t i v e growth c o n s e r v a t i v e dynamic s y s t e m s a r e , Dendrinos ( w i t h M u l l a l l y ) [4]. At l e a s t , t h e y might be more i m p o r t a n t t h a n a b s o l u t e growth i n u r b a d r e g i o n a l a n a l y s i s , t h a n they a r e i n t h e f i e l d of animal and p l a n t ecology. F o r example, i n t h e a r e a of a g g r e g a t e urban dynamics, s i n c e t o t a l n a t i o n a l growth may have v e r y l i t t l e t o do w i t h any p a r t i c u l a r u r b a n a r e a o r r e g i o n i n a n a t i o n a l economy ( p a r t i c u l a r l y when a v e r y l a r g e number of m e t r o p o l i t a n areas o r r e g i o n s a r e i n v o l v e d i n a b s e n c e of primacy), i t i s e l a s t i c i t i e s of growth t h a t matter. C i t i e s and r e g i o n s , competing w i t h one a n o t h e r f o r economic a c t i v i t y , a t t r a c t o r r e p u l s e growth depending on r e l a t i v e a d v a n t a g e s they e n j o y i n t h e n a t i o n a l space. R e l a t i v e growth h a s been argued t o be of i m p o r t a n c e i n a v a r i e t y of o t h e r g e o g r a p h i c a l c o n t e x t s , i n c l u d i n g i n t r a - u r b a n dynamics and t h e p r o c e s s e s underlying innovation diffusion. In these contexts, the role of the environment a s i t may a f f e c t a g g r e g a t e u r b a n dynamics c a n be a n a l y t i c a l l y studied and the purpose of this paper is precisely s p e c i f i c a l l y , i s s u e s a r e a d d r e s s e d r e g a r d i n g multi-urban to do so. More interact ion s t a b i l i t y and c o n d i t i o n s under which t h e e x i s t e n c e of p o t e n t i a l s c a n be shown. Under absolute growth and for certain conservative ecological a s s o c i a t i o n s V o l t e r r a was a b l e t o d e r i v e a g o v e r n i n g i n t e g r a n d . This paper shows t h a t such a n i n t e g r a n d c a n be d e r i v e d f o r p a r t i c u l a r classes of s p a t i a l (urban conservative) w i t h r e l a t i v e growth. systems, d i f f e r e n t than t h e V o l t e r r a ones, T h i s i s done i n P a r t I1 of t h i s paper. associated R e l a t i v e growth dynamics i s shown t o be t h e s o l u t i o n of a g o v e r n i n g i n t e g r a n d which measures the e n t r o p y of a g g r e g a t e growth dynamic d i s t r i b u t i o n and relative the interaction within s p a t i a l distribution. the zero The s t a t i o n a r i t y of the i n t e g r a l of such a n i n t e g r a n d r e s u l t s i n s t a t i o n a r i t y of a c u m u l a t i v e e n t r o p y T h i s i s of p a r t i c u l a r i n t e r e s t t o measure of r e l a t i v e s p a t i a l d i s t r i b u t i o n s . geographical a n a l y s i s s f nce i t provides i n s i g h t s i n t o t h e f i t n e s s f u n c t i o n s present in spatially interacting f u n c t i o n s t o t h e n o t i o n of systems. urban entropy, link We these fitness which we s t u d y ( f o r t h e f i r s t t i m e i n dynamic s p a t i a l a n a l y s i s ) n o t o n l y o v e r s p a c e , b u t a l s o o v e r time. It is shoun t h a t o v e r t i m e e n t r o p y i s maximized, but o v e r s p a c e i t i s a t a minimum in the (asymptotically competitive locale) for implications stable) exclusion ( e . , dynamic spatial a r e discussed total at steady which agglomeration conservative the state, end of u n i q u e n e s s of such i n t e g r a n d i s a d d r e s s e d . of systems. Part represents population urban into one Interpretations and 11, where t h e s u b j e c t of Further, suggestions on s p e c i f i c hypotheses f o r empirical t e s t i n g a r e presented t o g e t h e r w i t h conclusions. P a r t I. V o l t e r r a ' s Integrands. I n t h i s P a r t t h e vork of V o l t e r r a on a b s o l u t e growth i s summarized and, i n certain instances, s i m p l i - f i e d and extended t o a c q u i r e g e o g r a p h i c a l and I n S e c t i o n A t h e d e r i v a t i o n of t h e l o g i s t i c growth p a t h economic meaning. f r m a v a r i a t i o n a l p r i n c i p l e i s supplied f o r t h e s i n g l e s p e c i e s case. Section B d e a l s w i t h m u l t i p l e s p e c i e s i n t e r a c t i o n s and t h e d e f i n i t i o n of V o l t e r r a ' s conservative systems (under a b s o l u t e growth), notions. In conservative derived. Section C "stationary Finally, the variational action" dynamic and t h e i r demographic e n e r g y principle multiple i n S e c t i o n D t h e p r i n c i p l e of generating species Volterra's interaction is " l e a s t v i t a l action" by Volterra i n m u l t i p l e species i n t e r a c t i o n is presented. The r e a s o n s t o i n c l u d e a summary of V o l t e r r a ' s work i n P a r t I i s n o t o n l y t o b r i n g t h i s s i g n i f i c a n t work i n a c a p s u l e t o t h e a t t e n t i o n of r e g i o n a l s c i e n t i s t s and u r b a d r e g i o n a l g e o g r a p h e r s who have additional light not been exposed t o i t u n t i l now, o n V o l t e r r a ' s work by elaborating b u t a l s o t o shed on and/or simplifying c e r t a i n derivations. A. The p r i n c i p l e of "least a c t i o n " f o r o n e s p e c i e s l o g i s t i c growth. T h i s s e c t i o n p r e s e n t s t h e f i r s t a t t e m p t t o l i n k e n t r o p y w i t h dynamics of s p a t i a l s y s t e n s , d e f i n i n g t h u s cumulative s p a t i a l entropy. Volterra i n h i s c l a s s i c a l work on " t h e c a l c u l u s of v a r i a t i o n s and t h e l o g i s t i c c u r v e " found i n Scudo and Z i e g l e r [8] (p. 11-17) was t h e f i r s t t o d e r i v e t h e V e r h u l s t - P e a r l e q u a t i o n of l o g i s t i c ( a b s o l u t e ) growth i - x(a - bx) f r m t h e m i n i m i z a t i o n of a n i n t e g r a l E - PI(x,;,~) 0 dt , where: V o l t e r r a i n t e r p r e t s X a s t h e t o t a l ( c u m u l a t i v e ) q u a n t i t y of l i f e . The E u l e r c o n d i t i o n f o r o p t i m i z a t i o n of E is: The i n t e g r a n d I , chosen by V o l t e r r a , is: where ml, m2, k a r e appropriate constants. entropy i s introduced. a - m, (In 3 + dt I n I t h e element of c u m u l a t i v e Then t h e components of t h e E u l e r c o n d i t i o n a r e : 1) -q b (ln ( a - dX b =)+ 1 ) and : I f t h e t h r e e c o n s t a n t s s a t i s f y t h e conditions(').: then: which i s i d e n t i c a l t o t h e o r i g i n a l V e r h u l s t - P e a r l equation. ( l ) ~ h e r ei s a p r i n t i n g e r r o r on page 16 of Scudo and Z i e g l e r [ 8 ] r e g a r d i n g k = aml V o l t e r r a computed t h e second v a r i a t i o n of t h e i n t e g r a l E w i t h r e s p e c t t o X and i n d i c a t i n g E a t t a i n s a minimum. found i t p o s i t i v e , Volterra interprets this as "reducing the I n h i s o r i g i n a l paper movement p r i n c i p l e of minimum," Scudo and Z i e g l e r [ 8 J p. 15. of population to a I n compliance w i t h t h e s p i r i t of l a t e r work by V o l t e r r a one must assume t h a t he meant "minimum e f f o r t f o r - a d a p t a t i o n , " although V o l t e r r a does not e x p l i c i t l y s t a t e t h i s . Note t h a t t h i s expression E does not p o s s e s s a Hamiltonian, t h u s i t i s not a p o t e n t i a l . B. Conservation of demographic energy i n m u l t i p l e s p e c i e s i n t e r a c t i o n . Volterra's general f o r m u l a t i o n of the (non-logistic) growth m u l t i p l e s p e c i e s i n t e r a c t i o n a b s o l u t e growth is: ii - where ai 1 (ai+T i 1a j i xj) Xi = qxi , (2 1) i , j = 1,2,...1 9 1 i s t h e " c o e f f i c i e n t of self-growth", -1 i s an "equivalence f a c t o r " bi and ai i s a Coefficients a sign. "demographic ij depict coefficient" particular Also, V o l t e r r a c a l l s a i (Volterra's species terms associations [8], p. 239). depending on t h e i r t h e "gross" growth r a t e , bi a n "average weight" and ai t h e "net" growth r a t e . The key n o t i o n of Volterra's e l a b o r a t i o n i s t h e "value of t h e whole a s s o c i a t i o n " V, o r t h e " a c t u a l demographic energy".: The d i f f e r e n t i a l of V is e q u a l t o : dv = 1 bi i ai xi d t + l1 i j 'ji X iX j dt (2.3) on t h e b a s i s of which i t i s p o s s i b l e t o i n t r o d u c e t h e "demographic p o t e n t i a l energy" of a n e c o l o g i c a l a e s o c i a t i o n : I f t h e value of t h e second term i n t h e r.h.s. zero -' 1.e.: then the individual association. interactions Requirement ( 2 . 5 ) , will not of c o n d i t i o n ( 2 . 3 ) affect the total i s always ecological according t o V o l t e r r a , i s t h e d e f i n i t i o n of a "conservative ecological association." The system of d i f f e r e n t i a l e q u a t i o n s (2.1) and, t h e r e f o r e , t h e d e f i n i t i o n (2.5) implies that: of a c o n s e r v a t i v e e c o l o g i c a l a s s o c i a t i o n a l a Volterra i s equivalent t o t h e following condition: I n t e g r a t i o n of (2.6) 1 bi x i 1 g i v e s us: - a iX i ) = C o m t o r , due t o (2.2), 2.4).: T h i s i s V o l t e r r a ' s " p r i n c i p l e of c o n s e r v a t i o n of demographic' energy' vhich i s t h e stnu of a c t u a l demographic energy V and t h e p o t e n t i a l demographic energy P ([BIB P* 242)I n o r d e r f o r t h e a s s o c i a t i o n t o be c o n s e r v a t i v e , p. 165, employing u n n e c e s s a r i l y complicated p r o o f s ) , antisymmetry c o n d i t i o n s nus t be met: V o l t e r r a proves ( [ 8 ] t h a t t h e folloving tvo A s i m p l e r proof goes a s follows: t h e expression (2.5) can be w r i t t e n a s : which i d e n t i f i e s a p o l y n a n i a l of second degree i n t h e independent v a r i a b l e s x1,x2,. .., xI. implies d i r e c t l y d e f i n i t i o n (2.5) The c o n d i t i o n r e q u i r e s t h a t a l l c o e f f i c i e n t s be zero. (2.10). Thus, c o n d i t i o n s (2.10) a r e equivalent This to of a c o n s e r v a t i v e e c o l o g i c a l a s s o c i a t i o n and t o (2.7); a r e necessary c o n d i t i o n s f o r a n e q u i l i b r i u m t o exist, but n o t s u f f i c i e n t . best, the they At t h e e q u i l i b r i u m i s n e u t r a l l y s t a b l e , something which o c c u r s when a l l e i g e n v a l u e s have z e r o r e a l p a r t s ; ' o t h e r v i s e t h e e q u i l i b r i u m i s u n s t a b l e . i s a d i r e c t r e s u l t f r m t h e f a c t t h a t t h e sum of t h e r e a l p a r t s of e i g e n v a l u e s e q u a l s t h e sum of t h e d i a g o n a l elements of m a t r i x [ a z e r o ( s i n c e aii = 0 , f o r a l l i = 1,2,..., The non-zero association equilibrium immediately give d i f f e r e n t i a l e q u a t i o n s (2.1). s t a t e s of us the ij 1, This the vhich i s I). Volterra's first conservative ecological integral of the system of ( I t v i l l be r e c a l l e d t h a t a f i r s t i n t e g r a l of a system of . d i f f e r e n t i a l e q u a t i o n s i s a f u n c t i o n v h i c h h a s a c o n s t a n t v a l u e aloog each s o l u t i o n of t h e system of d i f f e r e n t i a l equations.) Folloving, is t h e d e r i v a t i o n of t h e f i r s t i n t e g r a l , vhich has a n i n t e r e s t i n g form f r a n a n econanic theory e tandpoint. The norrzero equilibrium * * s t a t e ( x l , x2, ..., xI)* of Volterra's c o n s e r v a t i v e e c o l o g i c a l a s s o c i a t i o n must e v i d e n t l y s a t i s f y t h e "fundamental system" ( V o l t e r r a ' s term) : The non-zero equilibrium state of this e x i s t s ) , due t o c o n d i t i o n s ( 2 . 5 ) , o r ( 2 . 7 ) , Conditions (2.1), (2.7), (2.10), (2.12), conservative association (if it requires that: (2.13) combined imply t h a t : Thus, and, t h e r e f o r e , t h i s i m p l i e s f u r t h e r t h a t a t a l l time p e r i o d s : x* bi exp v / n (Xii) i - Comt , where V i s t h e v a l u e of t h e whole a s s o c i a t i o n (2.2). i s t h e f i r s t i n t e g r a l f o r t h e s y s t a n (2.1). w r i t t e n as: - biXi i xi exp v Cons t Thus, t h e f u n c t i o n C o n d i t i o n (2.16) can be a l s o T h i s e x p r e s s i o n f o r t h e f i r s t i n t e g r a l c a r r i e s some economic i n t e r p r e t a t i o n from e i t h e r a u t i l i t y o r p r o d u c t i o n f u n c t i o n s t a n d p o i n t . Cobb-Douglas type u t i l i t y / p r o d u c t i o n function, -* v e c t o r of i n p u t f a c t o r s i n p r o d u c t i o n , x t h e v e c t o r of t h e i r p r i c e s . It c o r r e s p o n d s t o a where 5 c a n be viewed as a - t h e i r e q u i l i b r i u m v a l u e s , and b as , Q u a n t i t y expV from c o n d i t i o n (2.2) i s then t h e The r e t u r n s t o s c a l e a r e e q u a l t o V s i n c e (2.2) t o t a l v a l u e added. The s t a t i o n a r y p r i n c i p l e , t o be e l a b o r a t e d i n S e c t i o n C below, holds. t h u s may be c r i t i c a l i n c o n n e c t i n g ecology (and t h e n a t u r a l s c i e n c e s ) t o economics. One of t h e p e c u l i a r f e a t u r e s of V o l t e r r a ' s c o n s e r v a t i v e a s s o c i a t i o n s i s t h e f a c t t h a t f o r t h e e q u i l i b r i u m t o exist t h e a s s o c i a t i o n must c o n t a i n a n even number of d i f f e r e n t s p e c i e s ( [ 8 ] , p. 174). T h i s fundamental d i f f e r e n c e between t h e e c o l o g i c a l a s s o c i a t i o n s c o n t a i n i n g even and odd number of s p e c i e s is difficult to accept from an ecological viewpoint; because of this, V o l t e r r a ' s c o n s e r v a t i v e e c o l o g i c a l a s s o c i a t i o n s were c r i t i c a l l y c o n s i d e r e d by biologists. analyzed; effect of I n P a r t 11 t h e c o n s e r v a t i v e a s s o c i a t i o n s w i t h z e r o growth w i l l be f o r t h e s e r e l a t i v e growth e c o l o g i c a l a s s o c i a t i o n s t h e d i s t u r b i n g even and odd number of species disappears. Before, however, e n t e r i n g t h i s t o p i c , w e c l o s e V o l t e r r a ' s a n a l y s i s by summarizing t h e f i n d i n g s regarding V o l t e r r a ' s v a r i a t i o n a l p r i n c i p l e . C. The p r i n c i p l e of s t a t i o n a r y a c t i o n f o r t h e m u l t i p l e s p e c i e s c o n s e r v a t i v e a s s o c i a t i o n s by V o l t e r r a . Analogical t o t h e s i n g l e species case, Volterra considered a m u l t i p l e s p e c i e s c o n s e r v a t i v e a s s o c i a t i o n embedded w i t h i n t h e i n t e g r a l (which w e s h a l l c a l l t h e "cumulative a c t i o n " ) : where t h e i n t e g r a n d G (which we s h a l l c a l l t h e " c u r r e n t a c t i o n " ) i s g i v e n by: where xi(t) d t = Xi present. The u p r e s s i o n Again, 1 b iX i the element of cumulative 1 n Xi i s V o l t e r r a ' s ' t o t a l entropy is infinitesimal v i t a l i action"; thus, t h e c u r r e n t a c t i o n (3.2) connected c o r r e s p o n d i n g l y w i t h : i s d i v i d e d i n t o t h r e e p a r t s , each v i t a l a c t i o n ( t h e e n t r o p y measure of the a s s o c i a t i o n ) , i n t e r a c t i o n , and demographic energy ( t h e t o t a l q u a n t i t y of l i f e ) a t a s i n g l e time period. T h i s e c o l o g i c a l i n t e r p r e t a t i o n of a c t i o n c a n o b t a i n a d e e p e r meaning f o r a n a s s o c i a t i o n u n d e r r e l a t i v e s p a t i a l growth c o n d i t i o n s ( s e e P a r t 11). i n a more e x p o s i t o r y manner t h a n V o l t e r r a , we prove t h a t I n Appendix A, t h e i n t e g r a n d G f r a n (3.2) E u l e r condition. under i n t e g r a l E of (3.1) produce (2.1) a s its The f i r s t o r d e r ( E u l e r ) c o n d i t i o n d e f i n e s t h e p r i n c i p l e of stationary action, since: A Having s o a p t a n e x p r e s s i o n (3.1,2) constructed the corresponding H a m i l t o n i a n H and d i f f e r e n t i a l e q u a t i o n s e q u i v a l e n t t o (2.1). v a r i a b l e s Xi and pi, f o r t h e cumulative a c t i o n , V o l t e r r a the canonical He used t h e c a n o n i c a l ( c o - s t a t e ) where: -- aG (3.4) Pi and i n t r o d u c e d t h e B a m i l t o n i a n H i n t h e form, w i t h G g i v e n by (3.2).: The system (3.3) system of n w h a s t h e f o l l o w i n g c a n o n i c a l form: Expression ( 3 . 4 ) i m p l i e s t h a t : from which we o b t a i n : and, using (3.5), - 1 bi X i I n Xi i Thus, the therefore, since - -21 1 1 Hamiltonian H H = V + P = Coast. The principle of - 1 a i b i xi = i coincides t h e p r i n c i p l e of t h e c a n o n i c a l v a r i a b l e s Xi, D. aijXixj 1 1 with total t h e c o n s e r v a t i o n of demographic energy, and, demographic energy i s met H is t h e f i r s t i n t e g r a l of t h e system (3.3). pi, "least In t h e Hamiltortian o b t a i n s t h e form, from (3.81: vital action" for the multiple species c o n s e r v a t i v e a s s o c i a t i o n s by V o l t e r r a . I n t h i s s e c t i o n , a s p e c i a l c a s e of multi-species ( t h e c a s e where t h e demographic work i s zero.) i n t e r a c t i o n i s presented We w i l l draw from t h i s s p e c i a l c a s e f o r our i n t e ~ u r b a ns p a t i a l dynamics i n s e c t i o n C of P a r t 11. Volterra's definition of the total vital action for a conservative multispecies association is the integral: The f i r s t and second v a r i a t i o n s of t h e v i t a l a c t i o n A w i l l be ( i n a manner e q u i v a l e n t t o t h e one shown i n Appendix A): and where hi X2, Xi's a r e the variations ..., XI be of Xi t h e q u a n t i t i e s of l i f e f o r each k i n d of s p e c i e s . f r a n (2.1) L e t X1, such t h a t hi(0) = hi(T) = 0. Therefore t h e s a t i s f y t h e s y s t a n of e q u a t i o n s : where: are Volterra's increase" ([8], "demographic p. 239). coefficients" or The s u b s t i t u t i o n of "effective (4.4) coefficients i n t o (4.2) of gives the f o l l o w i n g e x p r e s s i o n f o r t h e f i r s t v a r i a t i o n &I of t h e v i t a l a c t i o n A: w h i l e hi are t h e v a r i a t i o n s of q u a n t i t i e s of l i f e Xi s u c h t h a t h i ( 0 ) 0. The e x p r e s s i o n - hi(T) - i s , by V o l t e r r a , t h e "vork of growth", o r t h e " v i r t u a l demographic vork" f o r t h e v a r i a t i o n s h l , h2,.. .,hI. L e t u s assume t h a t f o r some i n f i n i t e s i m a l v a r i a t i o n s of t h e q u a n t i t i e s of l i f e t h e v i r t u a l demographic work i s e q u a l t o z e r o : t h e n t h e f i r s t v a r i a t i o n of t h e t o t a l v i t a l a c t i o n w i l l be z e r o Simultaneously, bi > due t o p o s i t i v i t y of t h e second v a r i a t i o n ( 4 . 3 ) 2 (6 A > 0. ) t o t a l v i t a l a c t i o n &, due t o t h e e x p r e s s i o n ( 3 . 5 ) , Thus, XI, any i n f i n i t e s i m a l v a r i a t i o n hi, X2, ..., XI . 4 k )rr h o r i z o n which a t t a i n s a minimum. principle problems . of t h e The increment of t h e w i l l be of t h e q u a n t i t i e s of l i f e w i t h z e r o v i r t u a l demographic work (4.8) A t o g o v e r n t h e e v o l u t i o n of variational ..., hI h2, i n c r e a s e of t h e t o t a l v i t a l a c t i o n (4.1). = 0 t h e " a v e r a g e w e i g h t s " of s p e c i e s 0 and t h e p o s i t i v i t y of p o p u l a t i o n s , t o t a l v i t a l action is strongly positive 6A w i l l determine a n Thus, V o l t e r r a proposed a n i n t e g r a l m u l t i p l e s p e c i e s i n t e r a c t i o n o v e r a time T h i s s t a t a n e n t summarizes V o l t e r r a ' s main of least vital action e c o l o g i c a l a s s o c i a t i o n w i t h e c o l o g i c a l dynamics as i n (4.4). for conservative P a r t 11. C o n s e r v a t i o n C o n d i t i o n s i n Urban Dynamical Systems. I n t h i s P a r t we d e a l w i t h r e l a t i v e growth dynamics, a problem V o l t e r r a never a d d r e s s e d . growth E q u i v a l e n c e s a r e drawn b e t v e e n t h e a b s o l u t e and r e l a t i v e is which defined under different conditions, i n S e c t i o n A. The n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s f o r t h e e x i s t e n c e of a n e q u i l i b r i u m i n i n Section B with r e l a t i v e growth a r e demonstrated V o l t e r r a ' s c o n s e r v a t i v e s y s t e n s exposed. and their t h e i r advantages over Finally, the variational principles together with t h e i r e n t r o p i c n a t u r e a r e provided i n S e c t i o n C, i n t e r p r e t a t i o n f o r s p a t i a l systems. A. P r o p e r t i e s of s p a t i a l dynamic i n t e r a c t i o n . ecology necessitates c o n v e r t i n g e a c h s p e c i e s p o p u l a t i o n t o t h e c o n s e r v e d q u a n t i t y V. T h i s i s done Volterra's absolute t h r o u g h t h e u s e of t h e growth hi's multiple species (what V o l t e r r a c a l l e d "weight e q u i v a l e n t s " ) . As we mentioned i n P a r t I t h i s set of p a r a m e t e r s c a n be i n t e r p r e t e d as f a c t o r prices in econanic production theory i n v o l v e d which are h e t e r o g e n e o u s , where different f o r example, geographical variable (income, factors l a b o r and c a p i t a l . when d e a l i n g w i t h human p o p u l a t i o n d i s t r i b u t e d homogeneous input over capital, space, etc.) or under are However, any o t h e r relative growth c o n d i t i o n s , t h e conserved q u a n t i t y ( w h a t e v e r t h a y may be) d o e s n o t need conversion f a c t o r s . Whereas, V o l t e r r a a v o i d e d t h e c o n s i d e r a t i o n of p a r t i c u l a r c o n s e r v a t i v e c o n d i t i o n s ( f o r example, [ 8 ] , p. b e c a u s e h e d e a l t w i t h t h e h e t e r o g e n e i t y of 170 on z e r o s e l f - g r o w t h ) partly b i o l o g i c a l s p e c i e s , t h e r e i s no need f o r s u c h r e s t r i c t i o n s t o be imposed on u r b a n s p a t i a l dynamics. I n what follows, we s e t up t h e u r b a n r e l a t i v e s p a t i a l dynamics under various g r w t h conditions. W e d e m o n s t r a t e t h a t s p a t i a l r e l a t i v e dynami c s c o r r e s p o n d t o p a r t i c u l a r a b s o l u t e growth e c o l o g i c a l c o n s e r v a t i o n dynamics o f Volterra. Then, we proceed t o show t h e i r s t a b i l i t y p r o p e r t i e s and d i s c u s s t h e competitive exclusion condition, a r e s u l t a p p l i c a b l e t o a l l r e l a t i v e s p a t i a l dynamics. T h i s d i s c u s s i o n h a s d i r e c t i m p l i c a t i o n s upon t h e a p p r o p r i a t e n e s s of t h e d i f f e r e n t i a l e q u a t i o n s assumed t o h o l d f o r s p a t i a l dynamics; a l s o upon t h e a c c e p t a n c e of a g e n e r a l " e x c l u s i o n a r y p r i n c i p l e , " implying t o t a l a g g l o m e r a t i o n i n t o ' a s i n g l e s i t e , i n l o c a t i o n theory. F i n a l l y , we p r o p o s e a c o r r e s p o n d i n g i n t e g r a n d ( e q u i v a l e n t t o V o l t e r r a ' s l e a s t v i t a l a c t i o n p r i n c i p l e ) , and we show i t t o a t t a i n a maximum a s i t g o v e r n s o u r i n t e r u r b a n e v o l u t i o n . We show i t t o be a maximum c u m u l a t i v e e n t r o p y measure of t h e r e l a t i v e s p a t i a l i n t e r a c t i o n . Assume a homogeneous g e o g r a p h i c a l v a r i a b l e ( p o p u l a t i o n ) d i s t r i b u t e d o v e r different locations i ( i - 1,2, ...,I ) a t any time p e r i o d , t , s o t h a t t h e t o t a l p o p u l a t i o n V i s i n d e p e n d e n t of time: Along V o l t e r r a ' s distribution." lines, V c a n be i n t e r p r e t e d C o n d i t i o n (5.1) a s the total the i s more a p p r o p r i a t e f o r u r b a n s y s t e m s , a s i t i s a l e s s r e s t r i c t i v e conservation condition than Volterra's V. " v a l u e of d e f i n i t i o n of One c a n extend t h e c u r r e n t a n a l y s i s by examining t h e c a s e where V i s a f u n c t i o n of time. The s p e c i a l c a s e of s p a t i a l r e l a t i v e dynamics where V - 1 w i l l be r e f e r r e d t o as n o r m a l i z e d dynamics. Volterra's a b s o l u t e growth c o n s e r v a t i v e e c o l o g y dynamics shown i n (2.1) a r e now t r a n s f o r m e d i n t o t h e r e l a t i v e growth u r b a n ( s p a t i a l ) conservative dynamics by a system of o r d i n a r y d i f f e r e n t i a l e q u a t i o n s : s u b j e c t t o (5.1). The v a l i d i t y of such a n a s s o c i a t i o n f o r i n t e r u r b a n dynamic s p a t i a l i n t e r a c t i o n r e s t s on t h e o r e t i c a l g r o u n d s , Dendrinos ( w i t h M u l l a l l y ) as w e l l a s on e m p i r i c a l v e r i f i c a t l o n . [5], identifies i t s canmunity m a t r i x of in geographies (predatory, to support efficiently the competitive, proposition described p o p u l a t i o n dynamics. by models the theoretical front i t c o e f f i c i e n t s a s e t of a l l possible isolative, cooperative, commensal) among v a r i o u s u r b a n s e t t i n g s . seems On amensal, Recent e x t e n s i v e e m p i r i c a l evidence that aggregate drawing from urban dynamics mathematical can ecology be and Although t h e s e e n p i r i c a l f i n d i n g s a r e mostly r e p o r t e d f o r s i n g l e c i t y - n a t i o n i n t e r a c t i o n s , Dendrinos ( w i t h M u l l a l l y ) [ 5 ] , t e s t i n g of multi-urban i n t e r a c t i o n s c u r r e n t l y underway p r o v i d e s s u p p o r t f o r such modeling effort. These f i n d i n g s a r e reported in forthcoming papers, for example Dendrinos [ 4 ] . Two q u a l i t a t i v e f e a t u r e s of t h e model i n (5.2) a r e w e l l known: first, if t h e system h a s a n e q u i l i b r i u m s o l u t i o n , i t i s u n s t a b l e , o r ( a t b e s t ) n e u t r a l l y stable; second, for it connecting t h e model's t o have a s o l u t i o n , c e r t a i n c o n d i t i o n s must hold c o e f f i c i e n t s i n t h e canmunity i n t e r a c t i o n m a t r i x . We a d d r e s s next t h e q u a l i t a t i v e p r o p e r t i e s of t h i s model and t h e i r t h e o r e t i c a l implications. The a n a l y t i c a l a s p e c t s of t h e model a r e shown i n Appendix B , where, i t i s proven that condition, testing things, the model's parameters under zero-self of validity of growth such must for it interurban satisfy a special antisymmetry t o have a s o l u t i o n . association allows, Empirical among other t h e e x a m i n a t i o n of any c o r r e l a t i o n between s p a t i a l r e l a t i v e impedance ( o r r e l a t i v e a c c e s s i b i l i t y ) and t h e magnitude a n d / o r s i g n of t h e i n t e r a c t i o n coefficients. On a t h e o r e t i c a l l e v e l i t e n a b l e s u s t o d e t e c t ( i n c a s e of a solution) the dynamics. T h i s a n t i s y m m e t r i c p r o p e r t y i s v e r y i n f o r m a t i v e ; i t shows t h a t , under underlying specification (5.2), integrands governing urban and vhen s o l u t i o n e x i s t s , spatial relative s p a t i a l conservative a l s o i m p l i e s t h a t t h e r e is no f r i c t i o n dynamics a r e p u r e l y c a p e t i t i v e . due t o a g g l o m e r a t i o n i n r e l a t i v e dynamics, t o damp t h e dynamic e q u i l i b r i u m , t h u s producing e x c l u s i o n a r y a l l o c a t i o n s . B. E q u i l i b r i u m s t a t e s of r e l a t i v e s p a t i a l dynamics and d i s c u s s i o n . Although associations, Volterra did from point the not examine of view of zero self-growth urban spatial conservative dynamics a s s o c i a t i o n s a r e i n s i g h t f u l t o model r e l a t i v e d i s t r i b u t i o n dynamics. these Under a r e l a t i v e framework i n t e r n a l growth and n e t m i g r a t i o n a r e i n t e r t w i n e d s o t h a t t h e i r canbined e f f e c t i s modeled. An i m p o r t a n t example of a z e r o s e l f - g r o w t h normalized e c o l o g i c a l a s s o c i a t i o n was f i r s t s t u d i e d i n t h e t h e o r y of t e m p o r a l d i f f u s i o n of c w p e t i t i v e i n n o v a t i o n s , S o n i s [ l o ] . of I n t h e c a s = of r e l a t i v e growth d e p i c t e d by (5.2) the s t a b i l i t y properties the Volterra's equilibrium differ e c o l o g i c a l a s s o c i a t i o n s (2.1), significantly (2.5): from conservative t h e r e i s no need f o r a n even number of species t o i n t e r a c t f o r a s t a b l e equilibrium t o exist. I n agreement w i t h V o l t e r r a , ,however, i f a s o l u t i o n e x i s t s t h e e q u i l i b r i u m i s s t a b l e o n l y under competitive exclusion. T h i s - i m p l i e s t h a t o n l y t h e c o n c e n t r a t i o n of t h e whole (homogeneous) g e o g r a p h i c a l s u b s t a n c e ( e . g. p o p u l a t i o n , c a p i t a l , income, e t c . ) i n o n e of t h e r e g i o n s can b e s t a b l e a s y m p t o t i c a l l y . the equilibrium perturbation, the * s t a t e (yl, perturbed * y2, ..., y*I ) means s t a t e ( y l , y2, A s y m p t o t i c a l s t a b i l i t y of that, ..., yI) for exhibits any the small dynamic property: lim Proof of yimy;, i=1,2 t h i s statement Appendix B. ,...,I . f o r s p a t i a l competitive e x c l u s i o n is s u p p l i e d i n Under r e l a t i v e growth c o n d i t i o n s d e p i c t e d by e x p r e s s i o n ( 5 . 2 ) , a t best n e u t r a l l y s t a b l e s o l u t i o n s a r e o b t a i n e d and i n a l l l i k e l i h o o d o n l y e x c l u s i v e allocation result. of the Inter-urban homogeneous geographic interactions, variable onto one locale will viewed w i t h i n t h e framework of a s p e c i f i c environment ( t h e n a t i o n o r a r e g i o n ) u s e d t o n o r m a l i z e t h e urban s i z e , imply a s y m p t o t i c a l l y s t a b l e t o t a l a g g l o m e r a t i o n of t h e g e o g r a p h i c v a r i a b l e o n t o one site. T h i s i s t h e r e s u l t of p u r e c o m p e t i t i o n and a b s e n c e of f r i c t i o n found i n t h e a n t i s y m m e t r i c p r o p e r t i e s of t h e i n t e r a c t i o n m a t r i x . I n modeling s p a t i a l dynamics i n a r e l a t i v e framework, t h u s , fundamental i n s t a b i l i t y i s b u i l t i n t o t h e system. One by l o o k i n g a t t h e e r n p i t i c a l e v i d e n c e produced s o f a r , Dendrinos ( w i t h M u l l a l l y ) [ 5 ] , f i n d s s t a b l e p a t t e r n s of s p a t i a l growth when c i t i e s a r e viewed i n i s o l a t i o n and i n r e f e r e n c e t o t h e n a t i o n a s t h e environment o v e r which t h e i r r e l a t i v e s i z e i s computed. the relative This j u x t a p o s i t i o n has c e r t a i n implications: community i n t e r a c t i o n matrix of may r e g i o n s ) , t h e U.S. c e r t a i n s e l e c t i v e environments (i.e., o n e of them f o r i t s u r b a n areas. (5.2) be a p p l i c a b l e f o r as a whole n o t b e i n g I n t h e o r y , t h e r e i s no a p p a r e n t r e a s o n why one c a n n o t f i n d a n environment w i t h r e s p e c t t o which c i t i e s c o u l d e x h i b i t dynamics of t h e t y p e found i n (5.2). Further, t h e s t a b i l i t y p r o p e r t i e s of p a r t i c u l a r s p a t i a l s y s t e m s may v a r y as o n e changes t h e b r o a d e r environment w i t h i n which t h e s e s y s t e m s are viewed. T h i s may l e a d t h e s p a t i a l a n a l y s t i n c e r t a i n instances t o formulating i n t e r u r b a n interdependencies i n a d i f f e r e n t manner t h a n (5.2). F o r i n s t a n c e , o n e may wish t o i n t r o d u c e s t r o n g e r forms of i n t e r u r b a n i n t e r c o n n e c t a n c e by i n c l u d i n g c u b i c terms i n t h e s t a t e v a r i a b l e s , S o n i s [ 101. The i n f o r m a t i o n of help of a stochastic a n a c t i v e environment c a n be accomplished w i t h t h e matrix S - 1 ( ( s i j I which describes the process of redistribution intervention. of population among the various regions due to this This r e d i s t r i b u t i o n process a c t s i n a d d i t i o n t o the e c o l o g i c a l dynamics p r e s e n t i n t h e i n t e r a c t i o n m a t r i x . The a c t i v e environment smooths o u t t h e extreme a c t i o n of t h e c o m p e t i t i v e e x c l u s i o n p r i n c i p l e and l e a d s t o a more balanced regfons. f i n a l a s y m p t o t i c a l l y s t a b l e d i s t r i b u t i o n of p o p u l a t i o n among C l e a r l y , f u r t h e r e x t e n s i v e e m p i r i c a l s e a r c h i s needed t o a s c e r t a i n t h e v a l i d i t y of any of t h e above t h e o r e t i c a l c o n j e c t u r e s . C. V a r i a t i o n a l p r i n c i p l e s f o r u r b a d r e g i o n a l r e l a t i v e growth dynamics. I n t h i s s e c t i o n t h e main f i n d i n g of t h e p a p e r i s p r e s e n t e d , namely t h e d e r i v a t i o n of a n i n t e g r a l which g o v e r n s t h e e v o l u t i o n of spatial relative It i s c l o s e l y dynamics a s assumed i n (5.2) when t h e y p o s s e s s a s o l u t i o n . related to spatial cumulative This theoretical interpretation. entropy from which it draws its i m p l i c a t i o n s u p p o r t s t h e e v i d e n c e of e n t r o p y p r i n c i p l e i n s p a t i a l dynamics. an C o n s i d e r a normalized s p a t i a l dynamic s y s ten g i v e n by: w i t h t h e a n t i s y m m e t r i c m a t r i x B = (b i j )- : b = - b ; b = 0 Denoting as: o n e h a s t h e dynamical system: I n t h i s z e r o a g g r e g a t e and s e l f - g r o w t h c o n s e r v a t i v e s p a t i a l dynamics t h e v a l u e - 21 - of t h e whole a s s o c i a t i o n V i s e q u a l t o one and the potential demographic energy P i s z e r o , ( s e e ( 2 . 2 ) and ( 2 . 4 ) . interurban T h e r e f o r e , one can use an a p p r o p r i a t e m o d i f i c a t i o n of t h e V o l t e r r a i n t e g r a n d ( 3 . 2 ) f o r t h e c o n s t r u c t i o n of a v a r i a t i o n a l problem ( e q u i v a l e n t t o h i s i n t e g r a l of cummulative a c t i o n ) , 5 ) as i t s E u l e r c o n d i t i o n . which g e n e r a t e s t h e system (6.4, We propose t h e followfng i n t e g r a n d : and t h e a s s o c i a t e d c u m u l a t i v e a c t i o n w e i n t e r p r e t a s t h e urban f i t n e s s function. stationary cumulative i n t e g r a l El v a n i s h e s , action giving means rise that to The v a r i a t i o n a l p r i n c i p l e of the the first system of variation Euler of the differential equations Direct calculation gives T h e r e f o r e t h e i n t e g r a n d w e p r o p o s e through, 10) and the time derivative of (6.10) (6.8) the i m p l i e s t h a t through (6.9, original condition (6.4) obtained , since: whereas, t h e antisymmetry of t h e i n t e r a c t i o n m a t r i x B = ( b ij ) i m p l i e s (6.5). is The s t a t i o n a r y v a l u e of t h e c u m u l a t i v e a c t i o n E' t u r n s o u t t o be t h e c u m u l a t i v e e n t r o p y f o r normalized s p a t i a l dynamic s y s t e m s : Thus, and, t h e r e f o r e t h e " s t a t i o n a r y cumulative a c t i o n " f o r a normalized s p a t i a l d i s t r i b u t i o n dynamics i s t h e c u m u l a t i v e e n t r o p y of t h e p o p u l a t i o n d i s t r i b u t i o n / d u r i n g t h e time h o r i z o n T. T h i s i s o u r main f i n d i n g . C o n t r a s t i n g V o l t e r r a ' s i n t e g r a n d G, ( 3 . 2 ) , i n h i s conservative ecological dynamics, w i t h our i n t e g r a n d @ i n r e l a t i v e u r b a n dynamics, o n e sees t h a t t h e three terms in the ecological conservative systems (constituting total i n f i n i t e s i m a l v i t a l a c t i o n ) c o l l a p s e i n s p a t i a l dynamics i n t o a s i n g l e term;' v i t a l a c t i o n , i n t e r a c t i o n and demographic e n e r g y merge i n t o a single e n t i t y , namely c u m u l a t i v e s p a t i a l e n t r o p y . I t i s i m p o r t a n t t o p o i n t o u t t h a t t h e f i r s t term of i n t e g r a n d Volterra's "infinitesimal v i t a l action", p o p u l a t i o n d i s t r i b u t i o n (Shannon ( 9 1 , p. represents 396). 6 which is t h e Shannon e n t r o p y o f Volterra naturally did not g i v e s u c h a n i n t e r p r e t a t i o n of t h e " i n f i n i t e s i m a l v i t a l a c t i o n , " ( o r what we d e f i n e d a s " c u r r e n t v i t a l a c t i o n " e a r l i e r ) , a s Shannon's work a p p e a r e d i n 1948 i n t h e c o n t e x t of (6.6) communication t h e o r y . The second term of i n t e g r a n d @ i n r e p r e s e n t s t h e i n t e r a c t i o n between d i f f e r e n t p a r t s of t h e homogeneous geographical substance (population). The a n a l o g u e o f the Volterra "least v i t a l a c t i o n " p r i n c i p l e o b t a i n s f o r t h e r e l a t i v e growth dynamics t h e form o f dynamic maximum c u m u l a t i v e e n t r o p y p r i n c i p l e . In maximum. general one cannot d e t e r m i n e whether (6.12) has a minimum o r a However, f o r a s p e c i a l c a s e t o be a d d r e s s e d below one c a n show t h a t t h e s t a t i o n a r y v a l u e o f (6.12) a t t a i n s a maximum. Let u s consider f i r s t the i n t e g r a l ( 1 - e . , t h e c u m u l a t i v e e n t r o p y ) f o r t h e g e n e r a l c a s e (6.12) which c a n a l s o be w r i t t e n a s The f i r s t and second v a r i a t i o n s of t h e c u m u l a t i v e e n t r o p y El a r e where hl, h2, Yi = J: ..., hI yi d t , A a r e t h e v a r i a t i o n s of t h e cumulative populations, s u c h t h a t hi(0) cumulative populations Y i = hi(T) = 0 ( s e e Appendix A). s a t i s f y t h e system ( 6 . 4 , Since the 5), the f i r s t variation is It i s p o s s i b l e t o i n t e r p r e t t h e e x p r e s s i o n s as " c o e f f i c i e n t s o f p o p u l a t i o n i n c r e a s e due t o t h e i n t e r a c t i o n , " o r r e l a t i v e migration ( i .e., r e l a t i v e t r a n s f e r of p o p u l a t i o n ) c o e f f i c i e n t s . manner t h e e x p r e s s i o n 1 sihi In a similar c a n be i n t e r p r e t e d a s t h e v i r t u a l work of u r b a n i growth due t o t h e i n t e r - u r b a n i n t e r a c t i o n . Next we draw from the special case of multispecies interaction by V o l t e r r a , when t h e v i r t u a l work of urban growth i s z e r o t o show t h a t ( 6 . 1 2 ) o b t a i n s a maximum. I f f o r some c h o i c e o f t h e v a r i a t i o n s h l , h2, t h e cumulative populations Y 1 sidi i = 1 (1 bijYj) i , hi = 0 1 > 0 , , of i s equal t o zero, of cumulative and, s i m u l t a n e o u s l y , due t o t h e p o s i t i v i t y t h e second v a r i a t i o n ( 6 . 1 6 ) o f t h e c u m u l a t i v e e n t r o p y i s s t r o n g l y n e g a t i v e , d2e1 Therefore, (6.3) then t h e f i r s t v a r i a t i o n (6.17) e n t r o p y i s e q u a l t o z e r o 6E' = 0 o f t h e p o p u l a t i o n s yi = Yi ..., Y I c o n d i t i o n Y2, ..., hI <0 . f o r t h e same v a r i a t i o n s hi which imply t h e v a n i s h i n g o f t h e v i r t u a l work of u r b a n growth due t o i n t e r - u r b a n i n t e r a c t i o n t h e increment o f t h e cumulative entropy i s s t r o n g l y n e g a t i v e , which i m p l i e s a d e c r e a s e i n t h e c u m u l a t i v e e n t r o p y , q.0.d. I n c o n c l u e i o n , a dynamic maximum e n t r o p y problem i s uncovered t o g e n e r a t e the r e l a t i v e dynamic u r b a n model geographical substance (population). of s p a t i a l adaptation of a homogeneous This f i t n e s s function is equivalent t o a l e a s t e f f o r t p r i n c i p l e found i n V o l t e r r a ' e e c o l o g y . A f i n a l remark o n t h e p o s t u l a t e d i n t e g r a n d f o r s p a t i a l a s s o c i a t i o n s : proposed integrand must not necessarily be unique. Either the a c l a s s of e q u i v a l e n t i n t e g r a n d s c a n p o s s i b l y e x i s t , t h e o n e proposed h e r e b e i n g m e r e l y t h e i r c a n o n i c a l form; o r q u i t e d i f f e r e n t o n e s might a l s o produce t h e same result. For a c a s e i n p o i n t course, would imply t h a t s e e C e l f a n d and Fomin [ 6 ] , p. 36. This, of t h e r e a r e m u l t i p l e o b j e c t i v e f u n c t i o n s which c a n produce a n a d a p t a t i o n path. These a r e p o t e n t i a l l y i n t e r e s t i n g q u e s t i o n s f o r f u t u r e t h e o r e t i c a l s p e c u l a t i o n and e m p i r i c a l r e s e a r c h . D. The H a m i l t o n i a n o f u r b a n c o n s e r v a t i v e r e l a t i v e dynamics. We now t u r n t o t h e s e a r c h f o r a p o s s i b l e g o v e r n i n g H a m i l t o n i a n o f t h e n o r m a l i z e d s p a t i a l dynamics. Introducing the co-state variables: ayi a n d t h e new H a m i l t o n i a n : one can obtain: and t h e canonical system o f d i f f e r e n t i a l equations: S t a t i n g t h e R a m i l t o n i a n H as a f u n c t i o n o f t h e c o - s t a t e (7.1, variables, due t o 2) we o b t a i n : e x t r e m a l s Yi, dynamics. 1 Yi = 1 t h e v a l u e o f t h e H a m i l t o n i a n i s H = 2 o n t h e i and, t h e r e f o r e , i t i s a f i r s t i n t e g r a l o f t h e normalized s p a t i a l Due t o t h e c o n d i t i o n It i s i n t e r e s t i n g t o n o t e t h a t one c a n e a s i l y o b t a i n from (2.17) the f i r s t i n t e g r a l f o r t h e normalized s p a t i a l dynamical system a s a Cobb-Douglas f u n c t i o n II yiYi, where y (production) i state of the system. This * , i i = 1,2, expression i s ..., I , i s some e q u i l i b r i u m a l s o similar to the objective f u n c t i o n of a g e o m e t r i c programming problem. A s i t was mentioned e a r l i e r , V o l t e r r a found t h e s u f f i c i e n t c o n d i t i o n s f o r t h e p r e s e n t a t i o n of t h e s o l u t i o n of system (2.1) of t h e normalized s p a t i a l dynamics, obtain the explicit f o r m u l a s of i n quadratures. I n the case t h e a n a l o g i c a l c o n d i t i o n allows us t o s o l u t i o n s i n elementary functions. a l l o w s u s t o draw some l i n k s between s p a t i a l dynamics and t h e l o g i t model. i s done i n Appendix C. Here, one may n o t e t h e f o l l o w i n g : $ This It c o n d i t i o n (7.3) c a n a l s o be w r i t t e n as Yi = WP 1 ((- I pi + 1 ) 1 +7 1 bijyj] I j E x p r e s s i o n (7.6) 1 exp ((- 1 f k %+ 1) + T1 1 bkj j yj) (7.6) c o r r e s p o n d s t o t h e l o g i t model o f random u t i l i t y c h o i c e w i t h u t i l i t y functions These U c o n t a i n s e p a r a b l e e f f e c t s ; o n e i s a n e g a t i v e a s s o c i a t i o n w i t h pi and the other i s a positive association vith b ij and Y j . One may v i s h t o i n t e r p r e t pi a s t h e r e l a t i v e m a r g i n a l c o s t of f i t n e s s f o r urban setting i's economics). population A t equilibrium (the - = U Ui equivalent = 1 H , to shadow p r i c e s i n micro- s o t h a t t h e Hamilitonian can be $we t h a d c G i o r g i o L e o n a r d i from IIASA f o r p o i n t i n g t o u s t h i s r e w r i t i n g of ( 7 . 9 ) , s i n c e t h e denominator e q u a l s one by d e f i n i t i o n . - 27 - viewed a s a r e l a t i v e u t i l i t y f u n c t i o n . cost of fitness (1 b interaction i J relative declines, and U t i l i t y thus i n c r e a s e s a s the marginal increases Y ) increases. as the relative inter-urban I n view o f t h i s , t h e i n t e r p r e t a t i o n of t h e ij j O is insightful: f i t t n e s s function areas' current relative fitness level. it is the sum of a l l urban E ' i s t h e cumulative t o t a l f i t n e s s of F i t n e s s i s such t h a t t h e community of u r b a n a r e a s o v e r a t i m e h o r i z o n T. i n t e r u r b a n i n t e r a c t i o n maximizes t h e c u m u l a t i v e e n t r o p y o f t h e a s s o c i a t i o n . 1 The term (cumulative action.) p y r e p r e s e n t s t h e v a l u e of e f f o r t t o adapt i i i i n a l l s e t t i n g s , s o t h a t from (7.2) t h e c u r r e n t f i t n e s s l e v e l i s t h e n e t sum of t h e u t i l i t y l e v e l e n j o y e d and t h e t o t a l c o s t of a d a p t a t i o n ( t h e e f f o r t t o adapt) . One may ponder planning (decentralized control) w e l f a r e a s p e c t s of t h e proposed Hamiltonlan. this is a r e l a t i v e growth model comprehensive economics. (over space, and a g g r e g a t e s o c i a l It must b e k e p t i n mind t h a t and the i m p l i e d c o n t r o l s a r e much more functions and agents) than those i n welfare Thus, a l t h o u g h t h e scheme may be similar t o w e l f a r e m a x i m i z a t i o n problems, t h e e c o l o g i c a l b a s e o f t h e model proposed makes a n y p r a c t i c a l ( i . e . , specific) u s e of message of making, a this it line restrictive. of s u b j e c t more work, E c o l o g i c a l models, present f u l l y addressed a different in [5]. and t h i s i s a main perspective on policy They p r o v i d e the final outcomes from a complex and b r o a d e r i n t e r p l a y o f a c t i o n s among a v e r y l a r g e number of producers, consumers and g o v e r m e n t s . Conclusions. Volterra's tional o r i g i n a l a b s o l u t e growth c o n s e r v a t i o n c o n d i t i o n s and v a r i a - p r i n c i p l e s were reconsidered f o r one and m u l t i p l e s p e c i e s ecology. They were c o n t r a s t e d w i t h more s p e c i f i c c o n s e r v a t i o n c o n d i t i o n s f o r r e l a t i v e growth and s p a t i a l d i s t r i b u t i o n i n urban systems and a p p r o p r i a t e e q u i v a l e n c e s and ' substantive multiple i n t e r p r e t a t i o n s were drawn. 1 bi Xi I n integrand G = species Volterra's stationary action +- Xi i c o n d i t i o n (3.2), was found t o have a c o r r e s p o n d i n g one i n r e l a t i v e s p a t i a l urban dynamics u n d e r p u r e c o m p e t i t i o n of t h e form: 1 Yi (- = 2 $I + -1 In Y i condition (6.6). Furthe.rmore, (- produces i n our c a s e E ' = we proved 1y i l n that t h e corresponding in;egral y i ) d t , i.e., a s t a t i o n a r y cumulative i e n t r o p y measure, c o n d i t i o n (6.13) of s p a t i a l dynamics. The s t a t i o n a r y maximum c u m u l a t i v e e n t r o p y i n t e g r a l shown t o g o v e r n and produce as i t s s o l u t i o n t h e u r b a n . r e l a t i v e s p a t i a l dynamics was viewed a s one (among possibly equivalent to many) a adaptation least effort (fitness) principle conservative ecological associations. fifty year old studies involving function in in Volterra's spatial absolute dynamics grovth The d e t a i l e d comparison of V o l t e r r a ' s three different classes of ecological problems w i t h r e c e n t developments i n e c o l o g i c a l u r b a n dynamics v a s shown t o lend new insights processes. tovard a deeper understanding of spatial dynamic I n p a r t i c u l a r , b a s i c c o n d i t i o n s r e s u l t i n g i n dynamic i n s t a b i l i t y (competitive e x c l u s i o n i m p l y i n g c o n c e n t r a t i o n of p o p u l a t i o n i n a s i n g l e a r e a ) , o r n e u t r a l s t a b i l i t y i n r e l a t i v e u r b a n e v o l u t i o n were provided and c o n t r a s t e d w i t h t h e s t a b l e motion of u r b a n r e l a t i v e dynamics viewed i n i s o l a t i o n w i t h i n the nation's interactions. environment. It s e t t h e framework f o r modeling multi-urban T h i s t h e o r e t i c a l framework p r o v i d e s f o r e m p i r i c a l t e s t i n g , a t a s k which o n s i n g l e r e l a t i v e g r o w t h dynamics was p a r t l y c a r r i e d o u t i n [ 5 ] ; m u l t i - u r b a n interactions i n a r e l a t i v e g r o w t h framework a r e dealt with i n forthcoming p a p e r s , example [ 4 ] , w h e r e i t i s s h o v n t h a t e a c h p a r t i c u l a r form o f a n i n t e r u r b a n i n t e r a c t i o n m a t r i x g e n e r a t e s p a r t i c u l a r u n s t a b l e h i e r a r c h i c a l dynamics. References L. Curry, 1981, " D i v i s i o n of Labor from Geographical C o m p e t i t i o n , " Annals of t h e A s s o c i a t i o n of American Geographers, Vol. 71, No. 2: 133-165. D.S. Dendrinos, 1979, "A B a s i c Model of Urban Dynamics Expressed a s a S e t of Volterra-Lotka E q u a t i o n s , " i n D.S. Dendrinos, C a t a s t r o p h e Theory i n Urban and T r a n s p o r t a t i o n A n a l y s i s , Report # DOT/RSPA/DPB-25/80/2, U.S. Department of T r a n s p o r t a t i o n , Washington, D.C., 1980. D.S. Dendrinos, 8. M u l l a l l y , 1981, " E v o l u t i o n a r y P a t t e r n s P o p u l a t i o n s , " G e o g r a p h i c a l A n a l y s i s , Vol. 13, No. 4: 328-344. of Urban D.S. Dendrinos, 1984, "Nonlinear Dynamics of Urban H i e r a r c h i e s ; t h e U.S. Mountain Region (1890-1980) "Paper t o be p r e s e n t e d a t t h e NATO Advanced Summer I n s t i t u t e , 1985 Germany. Report SES-821-6620 N a t i o n a l S c i e n c e Foundation ( forthcoming). D.S. Dendrinos ( w i t h H. M u l l a l l y ) , 1984 Urban E v o l u t i o n : Studies i n the Mathematical Ecology of Cities, Oxford U n i v e r s i t y P r e s s ( i n p r e s s ) . 1.M. Gelfand, S.V. Fomin, 1963 C a l c u l u s of V a r i a t i o n s , r e v i s e d E n g l i s h e d i t i o n , t r a n s l a t e d and e d i t e d by R.A. Silverman, P r e n t i c e - H a l l . G.A. Korn, T.M. Korn, 1961, M a t h m a t i c a l Handbook f o r S c i e n t i s t s and E n g i n e e r s , McGraw-Hill, New York, Toronto, London. F.M. Scudo, J.R. Z i e g l e r ( e d s ) , 1978 The Golden Age of T h e o r e t i c a l Ecology: 192 3-1940, Springer-Verlag, L e c t u r e Notes i n Biomathematics, Vol. 22. C. Shannon, 1948, "A m a t h e n a t i c a l t h e o r y of caamunication", T e c h n i c a l J o u r n e y , Vol. 2 7 , No.l:379-423;.No.4:623-656. B e l l System - M. S o n i s , 1983, "Competition and Environment A Theory of Temporal I n n o v a t i o n D i f f u s i o n , " i n D. G r i f f i t h , A Lea ( e d s ) Evolving Geographic S t r u c t u r e s , Martinus Nijhoff. M. S o n i s , 1984, "Dynamic c h o i c e of a l t e r n a t i v e s , i n n o v a t i o n d i f f u s i o n and e c o l o g i c a l dynamics o f Volterra-Lotka", London P a p e r s i n Regional S c i e n c e , Vol. 14 ( i n p r e s s ) . APPENDIX A I n o r d e r t o f u l l y c a p t u r e t h e r i c h n e s s of V o l t e r r a ' s f o r m u l a t i o n , we go back t o c e r t a i n b a s i c p r i n c i p l e s i n t h e c a l c u l u s of v a r i a t i o n s problems, f o r example Gelfand and F m i n [ 6 ] . The v a r i a t i o n h ( t ) of f u n c t i o n X ( t ) i s t h e . d i f f e r e n c e between a nev f u n c t i o n X(t) and X(t) s u c h t h a t : We r e p l a c e i n t h e i n t e g r a l E a l l f u n c t i o n s X i ( t ) Xi(t) + hi(t) increment where &(hi) - hi(0) = hi(T) = 0 , E(Xi + h i , X i + hi) i = 2 - E(Xi, hi) by t h e " v a r i e d " f u n c t i o n s ,I . , and the I n t h e c a s e of (3.1,2) t h e increment is: and i t i s p o s s i b l e t o f i n d , a p p l y i n g T a y l o r ' s f o r m u l a , t h a t : We now form t h e f i r s t and second v a r i a t i o n s of t h e i n t e g r a l E: The f i r s t v a r i a t i o n is: construct and t h e second v a r i a t i o n : A necessary c o n d i t i o n f o r t h e i n t e g r a l E t o have a n extremum (maximum of a minimum) i s t h a t i t s f i r s t v a r i a t i o n bE v a n i s h f o r a l l a d m i s s i b l e v a r i a t i o n s hi ( i . e . , hi(0) = hi(T) = O).: which i s e q u i v a l e n t t o t h e f a c t t h a t t h e f u n c t i o n s Xi(t) s a t i s f y the Euler equations L The above c o n d i t i o n s (A.8) a r e necessary but n o t s u f f i c i e n t f o r t h e e x i s t e n c e of a n extremum; they d e f i n e t h e p r i n c i p l e of s t a t i o n a r y a c t i o n . . I n other words, t h e a c t u a l t r a j e c t o r y of V o l t e r r a ' s c o n s e r v a t i v e e c o l o g i c a l a s s o c i a t i o n does not rninirnize.the cumulative a c t i o n E but o n l y c a u s e s i t s f i r s t v a r i a t i o n t o vanish. D i r e c t c a l c u l a t i o n provides immediately t h e e q u i v a l e n c e between t h e system i n ( 3 . 7 ) and t h e system (2 The antisymmetry of s u b s t i t u t i o n s prove the that interaction matrix A = t h e E u l e r e q u a t i o n s (A.8) (aij) and appropriate a r e Volterra's dynamic equations (2.1). A f i n a l a n a l y t i c a l n o t e on system equations is a nou-linear however, aij But even this 256) .ki + aj%bj% simple, 4Cai4rbi and very = 0 s o l u t i o n f o r t h e system (2.1) 11, t h a t t h e c a s e of restrictive, conditions (A. 10) form to construct the for the explicit It i s shown, i n P a r t r e l a t i v e growth a l l o w s f o r e x p l i c i t s o l u t i o n s t o b e (Sonis (A. 10) . analytical i n elementary f u n c t i o n s . obtained i n e l a n e n t a r y functions. growth t o give conditions f o r the f o r each i , j, k i n t e g r a b i l i t y i n q u a d r a t u r e s d i d n o t a l l o w him logistic Given t h e s p e c i a l form i n q u a d r a t u r e s of t h e form: 'jk + a a b b i j i j systems t o q u a d r a t u r e s . V o l t e r r a w a s a b l e ( [ a ] p. i n t e g r a t i o n of (2.1) the Volterra d i f f e r e n t i a l one; therefore, i t is u s u a l l y impossible t o reduce t h e i n t e g r a t i o n of n o n - l i n e a r (3.1, (2.1) : are [lo], only F u r t h e r , t h e y g i v e t h e model of g e n e r a l i z e d p. 117). sufficient Moreover, (but not it is be necessary) shown that for the i n t e g r a b i l i t y i n q u a d r a t u r e s , Appendix C. ( 2 ) ~ o t ea n e r r o r r e g a r d i n g t h e i n t e g r a n d on p. 240 of [ a ] : e q u a t i o n C', l a s t term. the parenthesis i n APPENDIX B The system (5.2) with condition of zero aggregate growth (5.1) is e q u i v a l e n t t o t h e system where I t i s p o s s i b l e t o i n t e r p r e t t h e above system as a s p e c i a l c a s e of s p a t i a l growth dynamics w i t h z e r o s e l f growth ai = 0 , i = 1,2, weight" of species equal t o unity: coefficients b ij = - ...,I, relative ("average bi = 1, i = 1 , 2 , . . . , I , and i n t e r a c t i o n a i j i n a n a n a l o g i c a l t o V o l t e r r a ' s system ). Thus, t h e r e l a t i v e s p a t i a l growth model i n c l u d e s b o t h z e r o a g g r e g a t e ( r e g i o n a l ) growth (V - C o n s t ) and z e r o i n d i v i d u a l c i t y growth ( a i , = 0 ) . dynamics " z e r o growth dynamics." The i n t r o d u c t i o n of new v a r i a b l e s and nev i n t e r a c t i o n c o e f f i c i e n t s r e s u l t i n a z e r o growth normalized dynamics: We w i l l c a l l such It i s important to note that a z e r o growth (normalized o r not) relative s p a t i a l dynamics can be l i n k e d d i r e c t l y t o V o l t e r r a ' s c o n s e r v a t i v e e c o l o g i c a l t h e c o n d i t i o n of z e r o a g g r e g a t e growth (5.1) i s e q u i v a l e n t t o associations: i.e.', t o Volterra's conservation condition. T h i s f o l l o w s immediately from t h e eq u a l i t y : We n w f u r t h e r a n a l y z e t h e z e r o growth r e l a t i v e s p a t i a l dynamics: We prove t h a t i n t h e above s y s t e m t h e m a t r i x B = ( b fact text. with s i g n i f i c a n t interpretational implications ) is antisymmetric, a i) outlined in t h e main By i n t r o d u c i n g t h e c o n d i t i o n : (B. 10) v a r i a b l e s yl, ~ ~ , . . . , y ~become - ~ independent. Due t o (B.8) one c a n d e r i v e t h e (B. 11) identifyiq yl,y2,...,y1-~. a polynanial of second Condition (B.ll) degree in the independent holds a s an I d e n t i t y , variables thus r e q u i r i n g t h a t a l l i t s c o e f f i c i e n t s must b e z e r o . This, i n turn, implies that: (B. 12) V (biI (bij + - 2bII) + bIi b,,) - (biI + a 0 bIi) , - i = 1,2 (bjI + ,..., 1-1 bIj) (B. 13) - 2bII i = 1,2,...,1-1. = 0, (B. 14) Since V > 0 , then: which are t h e antisymmetry c o n d i t i o n s f o r m a t r i x B = (bij). Inspite the similarities between t h e above and V o l t e r r a ' s models, n o n e t h e l e s s , t h e r e i s a big difference in the equilibrium properties: all peculiar conditions a s s o c i a t e d w i t h t h e e x i s t e n c e of a n . e q u i l i b r i u m found i n a b s o l u t e e c o l o g i c a l dynamics a r e a b s e n t i n t h e c a s e of r e l a t i v e s p a t i a l growth. T h i s i s proven below. * The e q u i l i b r i u m s t a t e s yi, (B.l) i = 1,2,.,1, w i t h t h e antisymmetric i n t e r a c t i o n matrix of t h e dynamical system i n B = (bij) are the solutions of t h e following system of e q u a t i o n s : A c o m p l e t e d e s c r i p t i o n of analyzed next. a l l possible types of equilibrium s t a t e s , are I t is easy t o s e e (by s u b s t i t u t i o n ) t h a t t h e s i m p l e s t s o l u t i o n s of the system a r e I d i f f e r e n t s o l u t i o n s of t h e type: These e q u i l i b r i u m s t a t e s r e p r e s e n t t h e c o m p e t i t i v e e x c l u s i o n of s p e c i e s o r t h e t o t a l c o n c e n t r a t i o n of whole g e o g r a p h i c a l s u b s t a n c e w i t h i n t h e r-th ( r = 1 , .1 region F u r t h e r , l e t us c o n s i d e r t h e e q u i l i b r i u m s t a t e s with only r (2 < r < I ) non-zero For each r coordinates. r (I) such e q u i l i b r i u m s t a t e s . Without l o s s of t h e r e e x i s t n o t more t h a n g e n e r a l i t y , one can assume that: For t h i s type of e q u i l i b r i u m t h e system (B.16) w i l l be: The m a t r i x Br of t h e l i n e a r system (B.20) i s an antisymmetric r x r matrix. I f i t s determinant i s non-zero, t h e n t h e system has only a zero s o l u t i o n which c o n t r a d i c t s c o n d i t i o n (B.2 1). T h i s i s t h e d i f f e r e n c e between V o l t e r r a ' s and our s p a t i a l r e l a t i v e growth c o n s e r v a t i v e dynamics. This p o s s i b i l i t y h o l d s But f o r even r i t o n l y f o r even r , due t o t h e antisymmetry of t h e m a t r i x Br. i s p o s s i b l e t h a t t h e determinant d e t Br w i l l d e g e n e r a t e t o z e r o , t h e n e c e s s a r y c o n d i t i o n f o r e x i s t e n c e of e q u i l i b r i u m . of the system automatically. (B.20), due to I n t h e c a s e of odd r , t h e d e t e r m i n a n t antisymmetry or Br, is equal to I n any c a s e , i f t h e d e t e r m i n a n t of t h e system e q u a l s zero: zero d e t Br = 0 , t h e n t h e system (B.20,21) where A rj has a s o l u t i o n a r e t h e a l g e b r a i c complements ( o r c o - f a c t o r s ) , i n t h e r-th row of t h e m a t r i x Br. f o r t h e elements a rj T h i s s t a t e m e n t f o l l o w s from t h e well-known p r o p e r t y of c o - f a c t o r s (Korn and Korn [ 7 ] , 1.5-21.: r i = r d e t Br, 0 , i f r which i n o u r c a s e (B.22) i s The conservation condition F u r t h e r , f o r t h e same y (B.21) obviously holds * f o r yi from (B.23). * 1 Now i t w i l l be shown t h a t o n l y t h e c o m p e t i t i v e e x c l u s i o n e q u i l i b r i u m (B-18) c a n b e s t a b l e a s y m p t o t i c a l l y . e q u a t i o n s (B.l) The o r i g i n a l s y s t a a of c a n be r e w r i t t e n , a f t e r t h e s u b s t i t u t i o n : i s made, i n t h e form: differential I t i s well-known (Korn and Korn 1 7 1 , 9.5-4), t h a t t h e equilibrium s t a t e s f o r such a system a r e s t a b l e a s y m p t o t i c a l l y i f , and o n l y i f , a l l e i g e n v a l u e s of thenatrixL - ) = (1 ij ) have n e g a t i v e r e a l p a r t s . L n o u r case (B. 30) and, t h e r e f o r e , f o r t h e e q u i l i b r i u m s t a t e s (B.18) a d i a g o n a l (1-1) x (1-1) t h e m a t r i x L h a s t h e form of m a t r i x w i t h i t s d i a g o n a l e l e m e n t s Vbir (1 # r) : The e i g e m a l u e s of t h e m a t r i x L are i t s d i a g o n a l e l e m e n t s , and, t h e r e f o r e , t h e c o n d i t i o n f o r a s y m p t o t i c a l s t a b i l i t y of t h e c o m p e t i t i v e e x c l u s i o n e q u i l i b r i u m a r e t h a t Vb bir ir < 0, < 0 , i # r, i = 1,2,.. or ': ., r-1, rtl,..., I . T h i s means t h a t t h e c a n p e t i t i v e e x c l u s i o n e q u i l i b r i u m (B.18) (B.32) is asymptotically s t a b l e i f , and o n l y i f , a l l non-diagonal e l e m e n t s of t h e r-th antisymmetric i n t e r a c t i o n matrix B = (bij) are s t r o n g l y n e g a t i v e . column of t h e I t f o l l o w s immediately f r a n t h e antisymmetry of t h e i n t e r a c t i o n m a t r i x B t h a t f r w I d i f f e r e n t c o m p e t i t i v e e x c l u s i o n e q u i l i b r i u m s t a t e s (B.18) o n l y o n e c a n be a s y m p t o t i c a l l y s t a b l e s i n c e t h e n e g a t i v i t y of t h e r t h column of t h e m a t r i x B i m p l i e s t h e p o s i t i v i t y of t h e r t h row, i.e., t h e m a t r i x B can n o t i n c l u d e t v o d i f f e r e n t n e g a t i v e columns. Further, f o r t h e e q u i l i b r i u m s t a t e s of t h e t y p e (B.19) c o o r d i n a t e s (B.23) m a t r i x L h a s components from (B.29, I w i t h r non-zero 30): i > r O i < r The sum of trace 1 j* lj the real parts of t h e m a t r i x L. of t h e eigenvalues Due t o (B.25). for . t h e matrix (B. 33) L is the t h i s t r a c e i s equal t o zero: T h i s means t h a t t h e sum of t h e r e a l p a r t s of t h e e i g e n v a l u e s i s e q u a l t o z e r o , which i s p o s s i b l e i f e i t h e r t h e r e a l p a r t of e a c h e i g e n v a l u e i s e q u a l t o z e r o , o r t h e r e e x i s t eigenvalues with strongly positive r e a l parts. I n both c a s e s t h e e q u i l i b r i u m states of t h e t y p e (B.23) a r e a s y m p t o t i c a l l y u n s t a b l e . latter case the equilibrium is unstable, i m a g i n a r y e i g e n v a l u e s i m p l i e s p e r i o d i c motion. while t h e f o r m e r c a s e of In the pure APPENDIX C The s u f f i c i e n t c o n d i t i o n s f o r t h e i n t e g r a t i o n of t h e normalized s p a t i a l dynamical system i n e l e m e n t a r y f u n c t i o n s a r e : bij + bjk + bki = 0 f o r each i , j , k . ( c *1 ) These c o n d i t i o n s t o g e t h e r w i t h t h e antisymmetry of t h e i n t e r a c t i o n m a t r i x B = (bij) allow the construction of the system's f o l l o w i n g way ( S o n i s [ 101 , p. 116) : then where C1 i s a c o n s t a n t . Therefore, Thus, One c a n o b t a i n , due t o t h e above c o n d i t i o n : T h e r e f o r e , from (C.5), f o r each f i x e d k explicit solution in the yi = y i ( 0 ) exp bikt I L y j ( O ) exp b j k t , i = 1,2,.-*,I (C.8) j The above e x p r e s s i o n d e s c r i b e s t h e g e n e r a l i z e d l o g i s t i c growth and r e p r e s e n t s a temporal (Sonis e x t e n s i o n of [ll]). This t h e well-known extension logit random u t i l i t y c h o i c e model l i e s a t p r e s e n t .in t h e i n n e r c o r e of the u n i f i c a t i o n of i d e a s of u r b a n dynamics, i n n o v a t i o n d i f f u s i o n and i n d i v i d u a l ' s c h o i c e behavior. Condition (C.l) i s only a s u f f i c i e n t but not necessary c o n d i t i o n f o r t h e integration i n quadratures. For proving t h i s one c a n c o n s i d e r t h e f o l l o w i n g normalized s p a t i a l dynamic systems with t h e antisymmetric i n t e r a c t i o n matrix (C. 10) For t h i s m a t r i x c o n d i t i o n (C.l) b12 + b23 + b31 i s not t r u e because = 1 - 1 - 1 = - 1 2 0 , (C. 11) but t h e s u b s t i t u t i o n s : y 2 + y 3 = 1 - Y1 B c o n v e r t t h e system (C.9.1-4) - y1 - y 3 = y2 - i n t o t h e system 1 (C. 12) il = Yl ( 1 i - Y2 = Y 3 = l - (1 y1 yl) - (C. 13.2) Y2) - Y2 (C. 13.3) with an obvious s o l u t i o n y, = 1 / 1 + c,e-' y2=1/1+C2e y3 - (c1c2 - t , (C. 14.1) , 1) / ( 1 (C. 14.2) + ~ ~ e (-1 + ~ c)2 e t ) . (C.14.3)
© Copyright 2026 Paperzz