University of Durham Astronomical Instrumentation Group Report on work done for NIO GSMT book Simon Morris With Cedric Lacey, Robert Content, Marc Dubbledam ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Simulated NGST Image (Im 2001) 2’x2’ 10 hr exposure ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group High z Lyman α Emitters Ellis et al. z=5.6 lensed Lyman Alpha emitters Brighter object observed I=26, lensed by factor ~33 ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group ELT MEIFU Emission Line Sensitivity Calculation ‘Natural Seeing’ •Exposure 4x8 hours (~105 seconds), sky I=19.9 • 27% sky-to-hard-disk throughput • 50% of object flux in 0.6x0.6 arcsec box • All of line flux in 2 spectral pixels (1.7 nm) • 5σ Detection for 3x10-19 ergs cm-2 s-1 • Z=6 (Observed λ=851.2 nm) gives 1x1041 ergs s-1 luminosity ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Emission Line Sensitivity Calculation AO corrected and ‘diffraction limited’ • Assumption as in previous slide, except: • 50% of object flux in 0.2x0.2 arcsec box • 5σ Detection for 1x10-19 ergs cm-2 s-1 • Z=6 (Observed λ=851.2 nm) gives 3x1040 ergs s-1 luminosity • 50% of object flux in 0.006x0.006 arcsec box (50% EE diameter for 30m Airy Pattern at 790 nm) • N.B. this also implies a different plate scale to sample this properly. • 5σ Detection for 3x10-21 ergs cm-2 s-1 • Z=6 (Observed λ=851.2 nm) gives 1x1039 ergs s-1 luminosity ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Semi-analytic surface density prediction ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Semi-analytic continuum mag prediction ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Spatial Correlation Function in co-moving coordinates for Lyman α emitters. Assumed constant fixed escape fraction. Single flux range Points = Lyman α emitters Lines = Dark Matter ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Fluorescent Lyman Alpha Emitters • Can we detect neutral hydrogen clouds excited by the general UV background? • Gould and Weinberg 1996, ApJ, 468 • Bunker, Marleau and Graham 1998, AJ, 116, 2086 ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Re-Calculate above using most recent estimates for the UV background • Calculations done in mathCAD, electronic version of this (and also the sensitivity calculation) will be included in the final delivery. • Algorithm: • Assume ‘consensus’ cosmology • Use Haardt and Madau (1996) functional form for UV background strength and shape as function of z, but with latest version for parameters (Haardt, Private Comunication, CUBA code) • Use Power law approx. to hydrogen photoionisation cross section (simplifies code, but not necessary) • Consider clouds both optically thin and optically thick to UV background as separate cases using Gould and Weinberg formalism • Calculate cloud luminosities given a characteristic size • Convert these to fluxes and surface brightnesses given the redshift • Given known number of absorbers as a function of column density and redshift, and assuming the same characteristic size, calculate volume density of clouds expected satisfying given flux and surface brightness limits. ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group 14 Ly α Flux ⎛ Fthick( Rchar, z p) ⎞ log⎜ ⎟ −2 −1 ⎝ erg⋅ cm ⋅ s ⎠ 16 ⎛ Fthin( Nchar, Rchar, z p) ⎞ log⎜ ⎟ −2 −1 erg⋅ cm ⋅ s ⎝ ⎠ 18 20 22 0 1 2 3 4 5 6 zp 17 ( ) ⎞ ⎟ −2 −1 −2 ⎝ erg⋅ cm ⋅ s ⋅ arcsec ⎠ ⎛ log⎜ SBthick Rchar, z p ⎛ SBthin( Nchar, Rchar, z p) ⎞ log⎜ ⎟ −2 −1 −2 ⎝ erg⋅ cm ⋅ s ⋅ arcsec ⎠ SBBunker( z p) ⎞ ⎛ log⎜ ⎟ −2 −1 −2 ⎝ erg⋅ cm ⋅ s ⋅ arcsec ⎠ 18 Ly α Surface Brightness 19 20 21 22 0 1 2 3 4 5 6 7 zp ELT Science Case, Oxford, 28.04.03 7 University of Durham Astronomical Instrumentation Group 30 20 Angular Size (Rchar=50 kpc) Rchar ( ) dA z p ⋅ arcsec 10 0 0 1 2 3 4 5 6 zp 2 2.2 ⎛ ρ( Nthick , z p , Rchar) ⎞ 2.4 ⎟ −3 Mpc ⎝ ⎠ 2.6 log⎜ Volume Density of optically thick absorber/emitters 2.8 3 0 2 4 6 8 zp ELT Science Case, Oxford, 28.04.03 7 University of Durham Astronomical Instrumentation Group Lyα emitters, 25% complete? What are we selecting? Log (Number Mpc-3) LBG, 80% complete? Log(SFR M~/yr) ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group GSMT ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group MEIFU Mechanical design for fixed Cassegrain GSMT focus ELT Science Case, Oxford, 28.04.03 University of Durham Astronomical Instrumentation Group Ballpark Mass Budget (no lightweighing) Fused Silica glass ~ 2.2 g/cm3 ⇒ Single Spectrograph glass mass ~ 400 kg ⇒ 1000 kg per spectrograph ⇒ 24,000 kg for all spectrographs ⇒ 16,000 kg for remaining structure ⇒ 40,000 kg for whole instrument ELT Science Case, Oxford, 28.04.03
© Copyright 2026 Paperzz