TECTONICS, VOL. 4 , NO. 7 , PAGES 739-750, DECENEER 1955 QUATERNARY NORMAL AND REVERSE FAULTING AND THE STATE OF STRESS I N THE CENTRAL ANDES OF SOUTH PERU Michel S é b r i e r , I J a c q u e s Louis Mercier F r a n ç o i s Mégard , Gérard qaüiächer-$3 and Evelyne C a r e y - G a i l h a r d i s l A b s t r a c t . F i e l d s t u d i e s i n t h e Andes of s o u t h e r n P e r u show t h a t i n t h e High Andes and P a c i f i c Lowlands , Quaternary and Recent f a u l t s a r e normal. This e x t e n s i o n a l t e c t o n i c s p o s t d a t e s compressional deformations of P l i o c e n e - e a r l y Quaternary age. I n t h e sub-Andes t h e observed deformations are compres s i o n a l ; t h e y a f f e c t e a r l y Quaternary d e p o s i t s . Some of t h e f a u l t s s e p a r a t e Quaternary d e p o s i t s from t h e bedrock and t h u s are c l e a r l y of t e c t o n i c o r i g i n and n o t l a n d s l i d e e f f e c t s . S t r i a t i o n s on t h e f a u l t p l a n e s i n d i c a t e N-S t r e n d i n g e x t e n s i o n i n t h e High Andes and P a c i f i c Lowlands. The t o t a l amount of c r u s t a l s t r e t c h i n g i s s m a l l , probably of t h e order of 1%d u r i n g t h e l a s t 1-2 m.y. In t h e sub-Andes, f o l d s and f a u l t s a f f e c t i n g Neogene and e a r l y Quaternary d e p o s i t s r e s u l t from N-S s h o r t e n i n g . ~ 4' ' L a b o r a t o i r e de Géologie Dynamique I n t e r n e , U n i v e r s i t é P a r i s - S u d , Orsay, 2France. Centre Géologique e t Géophysique, U n i v e r s i t é d e s Sciences e t Techniques gdu Languedoc, M o n t p e l l i e r , France. O f f i c e de l a Recherche S c i e n t i f i q u e e t Technique d'Outre-Mer , P a r i s , France. Copyright 1985 by t h e American Geophysical Union. Paper number 5T0550. o278-7407I8sIOOST-OSS0 $10.00 N e v e r t h e l e s s , i t is supposed t h a t t h i s N-S s h o r t e n i n g is of e a r l y Quaternary age. The p r e s e n t - d a y compression probably s t r i k e s E-W, judging from f o c a l mechanisms i n t h e sub-Andes of c e n t r a l P e r u , s o u t h e r n B o l i v i a , and n o r t h w e s t Argentina. Data from s t r u c t u r a l a n a l y s i s of f a u l t s and from earthquake f o c a l mechanism. a l l o w u s t o surmise t h e s t a t e ,of stress i n t h e Andes of s o u t h e r n Peru. The High Andes and P a c i f i c Lowlands, s u b j e c t e d t o N-S t r e n d i n g e x t e n s i o n , a r e bounded by two zones of E-W t r e n d i n g compression: t h e sub-Andes t o t h e east, and the c o n t a c t between t h e convergent Nazca and South b e r i c a p l a t e s t o t h e west. In our model t h e maximum h o r i z o n t a l compressive stress t r a j e c t o r y u Hmax i s roughly p a r a l l e l w i t h t h e E-W convergence between t h e two p l a t e s ; 6 Hmax corresponds t o 6 1, i n t h e sub-Andes and t o d 2 i n t h e High Andes. The l a t t e r s i t u a t i o n is caused by t h e e l e v a t e d mass of t h e High Andes, where d z z ( t h e v e r t i c a l s t r e s s ) is i n f e r r e d t o b e d 1. Thus t h e t h i r d p r i n c i p a l s t r e s s a x i s , being o r t h o g o n a l t o t h e o t h e r two a x e s , i s o r i e n t e d N-S, a l l o w i n g e x t e n s i o n t o occur i n t h a t d i r e c t i o n . On t h e o t h e r h a n d , i n t h e sub-Andes 6 zz i s 6 3 , and h o r i z o n t a l E-W s h o r t e n i n g occurs. The s t a t e of s t r e s s i n t h e Andean c o n t i n e n t a l c r u s t above t h e 30" d i p p i n g s l a b a p p e a r s t o be d i f f e r e n t from t h a t i n t h e Andes o f C e n t r a l P e r u s i t u a t e d above the f l a t s u b d u c t i n g segment. In t h i s r e g i o n , compressional deformations a f f e c t a wider p a r t of t h e C o r d i l l e r a . ORSTOM Fonds Dochentaire \ '* 7so Sébrier e t al.: INTRODUCTION Two main types of s u b d u c t i o n zones have been d i s t i n g u i s h e d by Uyeda and Kanamori (1979): t h e Mariana t y p e w i t h e x t e n s i o n a l t e c t o n i c s and back a r c s p r e a d i n g and t h e C h i l e a n or Andean t y p e w i t h compressional t e c t o n i c s and no back- a r c s p r e a d i n g . However, i t i s a l r e a d y known t h a t normal f a u l t s have been r e p o r t e d i n t h e C e n t r a l Andes (Heim, 1949; S i l g a d o , 1951; Audebaud e t a l . , 1973; Aubouin e t a l . , 1973). I n t h e Andes of Peru and B o l i v i a , Quaternary e x t e n s i o n a l n o m a l f a u l t s have been a n a l y z e d (Dalmayrac, 1974; Lavenu, 1978; S o u l a s , 1978; Lavenu and B a l l i v i a n , 1980; Yonekura e t al., 1979; S k b r i e r e t al., 1980b, 1982) and e x t e n s i o n has been c o n s i d e r e d as the t y p i c a l s t a t e of s t r e s s of t h e A l t i p l a n o d u r i n g Quaternary and Recent times ( M e r c i e r , 1981). Some a u t h o r s have considered t h i s e x t e n s i o n a l t e c t o n i c s as a q u i t e n e g l i g i b l e , purely s u p e r f i c i a l , and l o c a l phenomenon (Allmendiger e t a l 1983; Jordan e t a l . , 1983). Nakamura and Uyeda (1980) have suggested some p h y s i c a l p r o c e s s e s which can b e r e s p o n s i b l e f o r e x t e n s i o n a l t e c t o n i c s along subduction z o n e s , such as landward d e c r e a s e of o Hmax, g r a v i t a t i o n a l body f o r c e s , e t c . R e c e n t l y , t h i s e x t e n s i o n a l t e c t o n i c s has been i n t e r p r e t e d as an e f f e c t of t h e h i g h l y compensated topography (Cross and P i l g e r , 1982; Suarez e t a l . , 19831, and a two-dimensional model h a s been p r e s e n t e d (Dalmayrac and Molnar , 1981; Froidevaux and Is acks , 1984). In t h e Andes o f P e r u , B o l i v i a and northernmost C h i l e , t w o r e c e n t and a c t i v e t e c t o n i c domains have been s e p a r a t e d i n r e l a t i o n t o t h e d i p of t h e subducted s l a b ( S t a u d e r , 1975; Barazangi and h a c k s , 1976, 1979; Mkgard and P h i l i p , 19761, t h e i r common boundary l y i n g a t about 14" S (Hasegawa and Sacks, 1981; Grange, 1983; Grange e t a l . , 198ba). North of t h i s l a t i t u d e , t h e s l a b d i p s a t about 30" below t h e t r e n c h i n n e r s l o p e , t h e s h e l f , and t h e c o a s t . F a r t h e r e a s t , it f l a t t e n s and i s a l m o s t h o r i z o n t a l under t h e Andes. In t h i s r e g i o n , E-W Quaternary compression i s observed i n a wide p a r t of t h e Andes ( S k b r i e r e t a l . , 1982; Blanc e t a l . , 1983; Blanc, 19841, b u t e x t e n s i o n i s p r e s e n t along t h e c o a s t ( S o u l a s , 1 9 7 8 ; S é b r i e r and Macharé, 1980; Macharé,, 1981) and i n t h e w e s t e r n p a r t of t h e High Andes, p a r t i c u l a r l y i n t h e C o r d i l l e r a Blanca (Dalmayrac, 1974; Yonekura e t a l . , 1979: Dalmayrac and Molnar, 1981; S 6 b r i e r e t ., Quaternary Normal and Reverse F a u l t i n g a l . , 1982). South of 1 4 " s l a t i t u d e , t h e s l a b d i p s s t e e p l y , and Quaternary e x t e n s i o n i s widespread. i n t h e Andes. T h i s e x t e n s i o n a l t e c t o n i c s i s evidenced mainly by E-W t r e n d i n g r e c e n t and a c t i v e normal f a u l t s b o t h i n t h e P a c i f i c Lowlands and t h e High Andes. I n t h e l a t t e r , e x t e n s i o n i s a s s o c i a t e d w i t h Recent v o l c a n i c a c t i v i t y . Compressional f a u l t i n g i s r e s t r i c t e d t o t h e lowlands of t h e subAndes which bound t h e High Andes t o t h e NE. S t r u c t u r a l a n a l y s i s of t h e normal f a u l t s i n d i c e t e s 9 N-S t r e n d i n g t e o s i o n a l t e c t o n i c s which p o s t d a t e s e a r l y Quaternary compressional movements. The few c r u s t a l e a r t h q u a k e s analyzed by Grange (1983) i n t h e Western C o r d i l l e r a a l s o . i n d i c a t e N-S t e n s i o n . R e l a t i o n s between s e i s m i c i t y and s u p e r f i c i a l deformations are more complicated along t h e f a u l t e d boundary between t h e c o a s t and t h e Western C o r d i l l e r a . I n t h e p r e s e n t paper w e d e s c r i b e a l l t h e Quaternary f a u l t s t h a t w e have observed i n s o u t h Peru. S i n c e s e i s m i c i t y i s g e n e r a l l y low, we f i r s t used L a n d s a t imagery t o s e a r c h t h e most conspicuous f a u l t zones of s o u t h Peru. Then w e focused o u r f i e l d work on t h e f a u l t e d Quaternary b a s i n s which a r e a s s o c i a t e d w i t h t h e major Quaternary f a u l t zones and o f f e r p o s s i b i l i t i e s t o d e c i p h e r Recent f a u l t movements. F u r t h e r w e surveyed s o u t h e r n Peru along t h e r o a d network u s i n g a e r i a l photographs i n o r d e r t o d i s c o v e r and s t u d y i n the f i e l d o t h e r f a u l t zones n o t e a s i l y seen on Landsat imagery. F i e l d s t u d i e s begin i n 1978. Q u a t e r n a r y f a u l t s a r e of primary i n t e r e s t because of t h e s c a r c i t y of f o c a l mechanisms i n t h a t p a r t of t h e Andean Cord i l 1 e r a . EXTENSIONAL TECTOFICS I N THE H I G H ANDES The Huambo-Cabana Conde A c t i v e F a u l t ------Western C o r d i l l e r a Zone, Geometry of t h e f a u l t s . I n t h e Western C o r d i l l e r a . about 100 km n o r t h of Arequipa ( F i g u r e I ) , l a v a p l a t e a u s l i e a t a mean e l e v a t i o n o f 4 km between t h e v i l l a g e s o f Huambo and Cabana Conde ( F i g u r e 1, p o i n t 82. They a r e crossed by t h e major, n e a r l y E-W t r e n d i n g T r i g a l and Solarpampa f a u l t s and by some o t h e r minor f a u l t s n e a r l y p a r a l l e l t o them ( F i g u r e s 2a and 2b). The f a u l t e d a r e a i s about 28 km long i n t h e E-W d i r e c t i o n and 10 km wide from n o r t h t o south. This f a u l t e d zone extends t o t h e S é b r i e r e t al.: I n Quaternary Normal and Reverse F a u l t i n g w e s t i n t o t h e Uncapampa p l a t e a u l o c a t e d 7.5 kin n o r t h of Huambo. In t h e a r e a e a s t o f Cabana Conde some s h o r t f a u l t s of t h e same system c r o s s c u t t h e v o l c a n i c flows vented from t h e Ampato v o l c a n i c c e n t e r l o c a t e d 1 0 h f a r t h e r t o t h e s o u t h . West of 72"W l o n g i t u d e , t h e mean t r e n d of t h e f a u l t s i s N82"E, with extreme v a l u e s of N77"E and N90"E. Toward t h e e a s t , t h e f a u l t s c u r v e t o a N105"E-N12O0E d i r e c t i o n i n t h e area of Cabana Conde. The T r i g a l f a u l t i s about 1 0 kin long, and t h e Solarpampa f a u l t i s 1 2 km long. The l e n g t h of t h e minor f a u l t s range between 1 and 5 km. Some minor f a u l t s branch o u t from t h e major o n e s ; g e n e r a l l y , throws d e c r e a s e away from t h e main f a u l t . A l l t h e s e f a u l t s a r e e a s i l y i d e n t i f i e d both i n t h e f i e l d ( F i g u r e 2 a ) and on a e r i a l photographs ( F i g u r e 2b) thanks t o well-developed s c a r p s t h a t a r e u s a l l y 5-10 m h i g h b u t r e a c h l o c a l l y 30 m f o r t h e major f a u l t s . Most of t h e s c a r p s a r e s o u t h f a c i n g , t h i s being o p p o s i t e t o t h e d r a i n a g e , c a u s i n g sagponds t o form where t h e f a u l t s c r o s s t h e few i n t e r m i t t e n t streams d r a i n i n g t h e p l a t e a u s . Most of t h e s e sagponds a r e f i l l e d w i t h sediments. According t o s u r f a c e o b s e r v a t i o n s , most of t h e f a u l t s d i p southward w i t h v a l u e s r a n g i n g between 60" and 70", b u t t h e crude columnar j o i n t i n g i n t h e l a v a s a t t h e s u r f a c e makes p r e c i s e o b s e r v a t i o n s d i f f i c u l t . Some s l i c k e n s i d e s w e r e measured a l o n g t h e r o a d c u t on t h e r i g h t bank of Quebrada T r i g a l ( F i g u r e s 3 and 4, s i t e 8). A t i t s w e s t e r n end, t h i s f a u l t h a s a l o c a l N114"E t r e n d and a 62" south d i p . . A t i t s e a s t e r n end, v a l u e s of N108'E w i t h 74" s o u t h d i p and N94"E w i t h 84" s o u t h d i p were measured along two branches of t h e f a u l t . Some n o r t h dipping f a u l t s have been a l s o observed i n p a r t i c u l a r a plurikilometric f a u l t crossing the s o u t h e r n p a r t of t h e l a v a p l a t e a u 2 km n o r t h of l a k e Mucurca has a n o r t h f a c i n g s c a r p 5-10 m high. Along a l l t h e f a u l t s , d i p - s l i p movement always p r e v a i l s over s t r i k e - s l i p , so t h a t no l a t e r a l d i s p l a c e m e n t s of t h e streams have been observed and a l l t h e s t r i a t i o n s t h a t w e measured have p i t c h e s ranging between 48" and 88" ( F i g u r e 4 , s i t e 8) with a c l e a r maximum around 80: The g e n e r a l southward d i p of t h e s e normal f a u l t s i s a s t r o n g argument a g a i n s t a huge l a n d s l i d e f a u l t i n g due t o t h e a t l e a s t 2000-m-deep i n c i s i o n o f t h e Colca R i v e r l o c a t e d n o r t h of t h e l a v a p l a t e a u s ( F i g u r e 2a). Age o f f a u l t i n g . Norphological 741 arguments favor a very r e c e n t a g e f o r t h e l a s t movements along t h e s e f a u l t s : (1) t h e s c a r p s a r e f r e s h and c u t present-day topography ( F i g u r e s 2b and 31, and (2) t h e streams have been unable t o erod-e away t h e r i d g e s t h a t dam t h e sagponds. A c l e a r example of t h e l a t t e r i s exposed i n Cerro T o c o a s i , 2 km SSW of Cabana Conde ( F i g u r e 2 a ) , where two small sagponds a r e p r e s e r v e d i n a g u l l y , s l o p i n g a t about 20", carved i n the c r e s t of t h e h i l l . Other arguments may be drawn from t h e space-time r e l a t i o n s of t h e f a u l t s with t h e g e o l o g i c a l u n i t s t h a t they cut. ?hemost r e c e n t u n i t s a r e t h e somewhat i n d u r a t e d s l o p e d e p o s i t s of p e r i g l a c i a l o r i g i n f a u l t e d along t h e r i g h t bank of Quebrada T r i g a l ( F i g u r e 3 , s e e d e t a i l e d s t u d y i n t h e n e x t s e c t i o n ) . These r a t h e r s t r a t i f i e d , ' angular, slope deposits ( c , F i g u r e 3 ) bury o l d e r s o i l s ( d , F i g u r e 3 ) and are covered only by t h e t h i n p r e s e n t day s o i l (a, F i g u r e 3 ) . We r e l a t e t h e s e s l o p e d e p o s i t s ( c ) with t h e l a s t c o l d epoch which is commonly considered t o b e g r o s s l y c o e v a l w i t h t h e Wisconsinian g l a c i a l epoch ( r o u g h l y 10,000 t o 50,000 y e a r s B.P.) of North America ( C l a p p e r t o n , 1972; Mercer and P a l a c i o s , 1977; S e r v a n t , 1977). The youngest f a u l t e d a n d e s i t i c flows (Mucurca flows V3, F i g u r e 2a) o r i g i n a t e d from a v e n t l o c a t e d 2 km n o r t h of l a k e Mucurca and flowed northward a c r o s s t h e main l a v a p l a t e a u . They damed l a k e Mucurca and f i l l e d i t s wide o u t l e t v a l l e y . This small v e n t ( a l t i t u d e 4550 m) and p a r t of t h e flows r e s t upon t h e d i s t a l moraines t h a t cover t h e western s l o p e of t h e huge eroded Lipayoc c a l d e r a . These moraines are u n c o n s o l i d a t e d , have a f r e s h morphology, and crop o u t down t o an a l t i t u d e of 4400 m. These c r i t e r i a are shared by many moraines r e l a t e d t o t h e l a s t Andean g l a c i a l epoch i n s o u t h e r n Peru. The Mucurca l a v a flow i s t h u s p r o b a b l y younger t h a n t h e "Wisconsinian epoch." Some v e n t s a r e l o c a t e d d i r e c t l y a l o n g t h e f a u l t s : t h e Uncapahpa v o l c a n i c v e n t , l o c a t e d 7 km n o r t h o f Huambo, l i e s o v e r a N82OE t r e n d i n g f a u l t t h a t appears t o be t h e western p r o l o n g a t i o n of t h e Solarpampa f a u l t . .The neck ( a l t i t u d e 4210 m) s t a n d i n g 7 h t o t h e N22"E o f Huambo i s a l s o l o c a t e d on t h e Solarpampa f a u l t . A c l o s e r examination of the r e l a t i o n s between t h e f a u l t s and t h e l a v a flows both a t t h e Uncapampa v e n t and where t h e Solarpampa f a u l t c r o s s e s t h e Mucurca (V3) flow shows t h a t f a u l t s have been r e a c t i v a t e d s e v e r a l times. T h e r e f o r e t h e i r . S6brier e t al. : -,.N Q u a t e r n a r y Normal and Reverse F a u l t i n g -* 0- - - 1 \ - I b S é b r i e r e t al.: c Q u a t e r n a r y Normal and Reverse F a u l t i n g 743 movements a r e i n p a r t contemporaneous with l a v a e r u p t i o n s . Tne r e c e n t V3 Uncapampa volcanoe vented f l u i d b a s i c a n d e s i t e s toward t h e w e s t and NW ( F i g u r e 2 a ) . The v e n t c o n s i s t s of two horseshoe-shaped i n s e t sommas t h a t are widely opened northwestward and a r e f i l l e d by a younger c e n t r a l flow. W o minor E-W f a u l t s c u t both sommas b u t do n o t c u t t h e c e n t r a l flow ( F i g u r e 2a). A s t h e s t a t e of e r o s i o n , w e a t h e r i n g , and morphology of a l l t h e f l o w s vented from Uncapampa c r a t e r i s t h e same, it can be assumed t h a t they a r e r e l a t e d t o an almost s i n g l e v e n t i n g e p i s o d e i n p a r t coeval with t e n s i o n a l t e c t o n i c s along t h e E-W t r e n d i n g normal f a u l t s . Analysis of t h e r e l a t i o n s between t h e d i f f e r e n t flow u n i t s of t h e Mucurca flow and t h e Solarpampa f a u l t a l s o d e m o n s t r a t e s t h a t t h i s f a u l t moved a t t h e t i m e t h e l a v a s were flowing. In t h e o l d e r v o l c a n i c s V2, t h e f a u l t throw i s l a r g e r t h a n i n t h e Mucurca V3 f l o w ( F i g u r e 2a). Upstream, i.e., s o u t h of t h e f a u l t , t h e western p a r t of t h e V3 flow has b e e n ponded a l o n g t h e a l r e a d y e x i s t i n g s c a r p , b u i l t i n t o V2 l a v a s , g i v i n g a p e c u l i a r arrangement of t h e l a r g e pahoehoe waves on t h e flow s u r f a c e . Once t h e pond had b e e n f i l l e d by t h e o l d e r p a r t of V3 f l o w , t h e younger one w a s a b l e t o flow f r e e l y downstream and f i l l t h e v a l l e y f a r t h e r n o r t h . A later normal movement a l o n g t h e same Solarpampa f a u l t again d e p r e s s e d t h e s o u t h e r n block. These d a t a i n d i c a t e t h a t t h e Solarpampa f a u l t has moved a t l e a s t twice d u r i n g i t s Recent h i s t o r y . S i m i l a r l y , t h e throw of t h e T r i g a l f a u l t a t t h e Pampa T r i g a l s i t e (see n e x t s e c t i o n ) i s g r e a t e r t h a n 10 m i n t h e V i v o l c a n i c s and only about 4 m i n t h e s l o p e d e p o s i t s ( F i g u r e 3). S t r u c t u r a l a n a l y s i s of T r i g a l s i t e . The v o l c a n i c n a t u r e of t h e m a t e r i a l and t h e l a c k of good o u t c r o p s make a d e t a i l e d k i n e m a t i c a n a l y s i s of t h e Huambo-Cabana Conde f a u l t system d i f f i c u l t . Only i n t h e Quebrada T r i g a l , a f r e s h r o a d c u t a l o n g t h e new Huambo-Cabana Conde road allowed us t o s t u d y i n some d e t a i l t h e s t r i a t i o n s of a f a u l t e d zone a s s o c i a t e d with t h e T r i g a l f a u l t ( T r i g a l s i t e , F i g u r e s 2a and 3). The throws of i n d i v i d u a l f a u l t s range between 1 dm and 1 m. The movements are v e r y r e c e n t because t h e s e f a u l t s c u t p e r i g l a c i a l s l o p e d e p o s i t s ( c , F i g u r e 3) r e l a t e d t o t h e l a s t g l a c i a l epoch ( s e e p r i o r section). In addition, the presentday s o i l ( a , F i g u r e 3) appears t o b e s l i g h t l y f a u l t e d . These s l o p e d e p o s i t s are U c.ç' Fig. 2a. G e o l o g i c a l map of t h e Huambo-Cabana Conde area (Western C o r d i l l e r a ) , 100 k m ' n o r t h of Arequipa ( s e e l o c a t i o n i n F i g u r e 1, p o i n t 8). The l a v a p l a t e a u , ' a t a mean e l e v a t i o n of 4 km, i s c r o s s e d by t h e major normal T r i g a l and Solarpampa f a u l t s ( t h i c k l i n e s h a t c h u r e d on t h e s i d e of t h e downthrown b l o c k ) . The f a u l t s o f f s e t t h e a n d e s i t i c Mucurca flow of p o s t l a t e g l a c i a l epoch. Kinematics of t h e T r i g a l f a u l t analyzed i n d e t a i l a t T r i g a l s i t e ( p o i n t 8 ) i n d i c a t e a n e a r l y N-S trending extension (Figure 4 , s i t e 8). r. m Y m rt Pl i ,I! km 5 Fig. 2b. A e r i a l photograph covering t h e c e n t r a l p a r t of t h e Huambo-Cabana Conde area seen on a n d e s i t i c flows a r e d i r e c t e d northward as t h e Mucurca f l o w (M). The T r i g a l (TI and Solarpampa most prominent s t r u c t u r e s seen on t h e a e r i a l photograph. The minor Uncapampa v e n t (U) and t h e (small arrow heads) c u t flows produced by t h i s vent. The T r i g a l s i t e ( F i g u r e 3) i s shown by a F i g u r e 2a. Most of t h e (SI normal f a u l t s a r e t h e minor E-W t r e n d i n g f a u l t s small arrow marked t r . S6brier e t al. : 746 Quaternary Normal and Reverse F a u l t i n g fb . I l t t o 42 to Huambo Cabana C o n d e O 5m Fig. 3. F i e l d view of t h e T r i g a l f a u l t a t T r i g a l s i t e ( F i g u r e s 2a and 2b, p o i n t 8 ) a l o n g t h e Huambo-Cabana Conde road. Symbols a r e as f o l l o w s : a , p r e s e n t - d a y s o i l ; b y s l o p e b r e c c i a made of v o l c a n i c d e p o s i t s b e i n g a l a t e r a l e q u i v a l e n t of t h e V l l a v a flows; c y s l o p e d e p o s i t s r e l a t e d t o t h e l a s t g l a c i a l epoch; d , p a l e o s o i l between b and c u n i t s ; sf, f a u l t s c a r p ; f p , f a u l t plane. S t r i a t i o n s have been measured on f a u l t p l a n e s w i t h i n t h e same T r i g a l f a u l t zone ( F i g u r e 4 , s i t e 8). somewhat c o n s o l i d a t e d because they have a well-developed sandy-c layed m a t r i x which c o n t a i n s only few s c a t t e r e d r o c k fragments. A t t h e s c a l e of t h e o u t c r o p , m a t e r i a l has an homogeneous b e h a v i o r . Moreover t h e r e i s no evidence of f a u l t p l a n e r o t a t i o n , as t h e o r i g i n a l bedding does n o t appear t o be warped. Twelve s t r i a t e d normal s l i c k e n s i d e s were measured. I t c l e a r l y appears t h a t t h e k i n e m a t i c s of t h e s e f a u l t s ( F i g u r e 4 , s i t e 8 ) a g r e e b e t t e r w i t h a roughly N-S lengthening. To d e f i n e more a c c u r a t e l y t h e d i r e c t i o n s of Recent and a c t i v e e x t e n s i o n , we model b r i t t l e deformation c o n s i d e r i n g t h e f a c t t h a t the rocks a r e highly f r a c t u r e d and blocks a r e r i g i d . I t i s c u r r e n t p r a c t i c e t o model deformation of h i g h l y f r a c t u r e d bodies of rocks which have been s u b j e c t e d t o a s t r e s s f i e l d by u s i n g a simple mechanical s y s t e m (Carey and B r u n i e r , 1974; Carey, 1976, 1 9 7 9 ) ( s e e t h e appendix). This supposes t h a t t h e b u l k change of t h e geometry of t h e rock body occurs through t h e a d d i t i o n of independent and small displacements of r i g i d blocks. I f t h e s l i p s on t h e f a u l t s a r e i n d e p e n d e n t , then t h e s l i p S g i v e n by t h e s t r i a t i o n s on each f a u l t p l a n e has t o be p a r a l l e l to the tangential s t r e s s t r e s o l v e d on each f a u l t p l a n e . I n v e r s i o n o f d a t a y i e l d s t h e azimuth of t h e p r i n c i p a l s t r e s s axes and a r a t i o R of t h e p r i n c i p a l s t r e s s d i f f e r e n c e s such as R=(U 2-0 1 > / ( 6 3-6 1). For the T r i g a l s i t e ( F i g u r e 4 , s i t e 81, although the s t r i a t e d s l i c k e n s i d e s a r e o n l y 12, they are r a t h e r w e l l s p a t i a l l y d i s t r i b u t e d and t h u s e n a b l e a computation. The o b t a i n e d s o l u t i o n ( s i t e 8 , T a b l e 1) appears t o be good because the a n g l e s ( t , S ) between t h e p r e d i c t e d t and t h e o b s e r v e d S s t r i a t i o n s a r e always l e s s t h a n 20" ( s e e histogram, F i g u r e 4 , s i t e 8 ) . The minimum " t e n s i o n a l " p r i n c i p a l s t r e s s ( o 3) d i r e c t i o n has an azimuth of N l O ' E , t h e intermediate deviatoric principal s t r e s s v a l u e (o 2 ) i s " t e n s i o n a l " b u t of much smaller magnitude than t h e minimum p r i n c i p a l s t r e s s , as shown by t h e r a t i o R=0.77. Therefore t h e Recent and p r o b a b l y a c t i v e s t a t e of s t r e s s of t h i s a r e a i m p l i e s a n e a r l y N-S t r e n d i n g e x t e n s i o n . A t l e a s t p a r t of t h e r e c e n t v o l c a n i c S 6 b r i e r e t al.: Quaternary Normal and Reverse F a u l t i n g a c t i v i t y of t h e Western C o r d i l l e r a i s a s s o c i a t e d w i t h t h i s N-S t r e n d i n g tensional tectonics. T h i s appears t o have a r e g i o n a l meaning s i n c e i t i s i n very good agreement w i t h t h e occurence of E-W t r e n d i n g a n d e s i t i c dykes a t Achoma i n t h e Chivay b a s i n which i s l o c a t e d 30 km f a r t h e r east of Cabana Conde. Unpublished K-Ar d a t e s (G. Feraud, w r i t t e n communication, 1984) from t h e s e Chivay v o l c a n i c s and from t h e b a s a l p a r t o f t h e Huambo-Cabana Conde r e c e n t v o l c a n i c s (V2 i n F i g u r e 2a) confirm t h e P l e i s t o c e n e age of t h e s e rocks (ages between 0.2 and 1 m.y. B.P.) and t h e r e f o r e o f t h e N-S e x t e n s i o n a l t e c t o n i c s . Q u a t e r n a r y and A c t i v e Normal F a u l t s Northeastern Altiplano along t h e -- Around Lake T i t i c a c a , Quaternary l a c u s t r i n e t e r r a c e s and coeval e r o s i o n a l s u r f a c e s are w e l l preserved. They do n o t show c l e a r o f f s e t s due t o normal f a u l t i n g . e x c e p t along t h e n o r t h e a s t e r n b o r d e r of t h e A l t i p l a n o (Lavenu, 1981; S é b r i e r e t a l . , 1982; Lavenu e t al., 1984). f i e r e , Quaternary normal f a u l t s have been d e s c r i b e d , and t h e i r k i n e m a t i c s are i n agreement with r o u g h l y N-S s t r i k i n g e x t e n s i o n (Lavenu, 1978; Bles e t al., 1980). From a g e n e r a l p o i n t of view, e x t e n s i o n a l deformation appears t o b e small on t h e A l t i p l a n o and a l o n g i t s southwestern margin. However, normal faulting is clear i n i t s northeastern part and i n t h e t r a n s i t i o n a l zone with t h e E a s t e r n C o r d i l l e r a . Here we d e s c r i b e t h e normal f a u l t s t h a t we observed on t h e P e r u v i a n A l t i p l a n o and i t s n o r t h w e s t e r n c o n t i n u a t i o n as f a r as t h e Cuzco b a s i n ( F i g u r e 1). The Cuzco b a s i n f a u l t s . The Cuzco b a s i n i s a small intra-Andean b a s i n l o c a t e d between t h e E a s t e r n C o r d i l l e r a and t h e High P l a t e a u s ( F i g u r e s 1 and Sa). It i s p a r t l y i n f i l l e d by Quaternary continental deposits (Sébrier e t a l . , 1982; Cabrera, 1984). To t h e n o r t h , t h i s b a s i n i s l i m i t e d by t h e Tambomachay a c t i v e f a u l t which is about 20 km long ( F i g u r e s 5a and 5b) and e x h i b i t s a 2-m-high s o u t h f a c i n g morphological s c a r p l e t ( F i g u r e 6 ) . This f a u l t has a n e a r l y N90" t o N120"E t r e n d and a mean d i p of 60" t o t h e south. A t i t s western end, a w e s t f a c i n g s c a r p l e t a p p e a r s ; t h i s N-S s t r i k i n g recen; f a u l t shows a l s o a normal downthrow. Thus a l l t h e r e c e n t f a u l t s have a c l e a r normal ~ - 747 component (Figures 6 and 7 , s i t e 9 ) . The a p p r o x i m a t e l y 300-m-high south f a c i n g s c a r p which dominates t h e 2 m h i g h s c a r p l e t (Figure 6 ) indicates t h a t the Tambomachay f a u l t has moved s e v e r a l t i m e s d u r i n g t h e P l e i s t o c e n e , producing a cumulative normal throw t h a t may a t t a i n 300 m. S t r i a t e d f a u l t planes have been observed i n s e v e r a l p l a c e s (a, b y c y d , F i g u r e 5 a ) i n t h e v i c i n i t y of t h e major f a u l t and n e a r San Sebastian. On t h e m a j o r f a u l t zone, two o r t h r e e superimposed f a m i l i e s of s t r i a t i o n s are c l e a r l y s e e n . The f i r s t one shows a r e v e r s e s i n i s t r a l s t r i k e - s l i p motion which agrees with an E-W s h o r t e n i n g and i s r e s p o n s i b l e of t h e l i n e a r trace of t h e Tambomachay f a u l t . The l a s t one shows a normal s t r i k e - s l i p movement which a g r e e s with a N-S l e n t h e n i n g ( F i g u r e 7, s i t e 9). This i s t h e l a s t kinematics which has probably produced t h e normal s c a r p seen i n t h e f i e l d ( F i g u r e 6). Near San S e b a s t i a n , f a u l t s have throws which range between s e v e r a l decimeters and 3 m. They a r e P l e i s t o c e n e t o very Recent i n age because they o f f s e t Quaternary d e p o s i t s and p o s t d a t e compressional deformation which a f f e c t s e a r l y Pleistocene l a c u s t r i n e beds (Figure 5a). It i s e a s i l y seen ( F i g u r e 7, s i t e 9 ) t h a t normal f a u l t s having a NW-SE d i r e c t i o n show a c l e a r s i n i s t r a l s t r i k e s l i p component so t h a t e x t e n s i o n does n o t appear o r t h o g o n a l t o t h e Andean b e l t s t r i k e . I n v e r s i o n of t h e d a t a f o r t h e two s i t e s g i v e s minimum p r i n c i p a l stress (u 3 ) d i r e c t i o n s s t r i k i n g t o t h e N186"E ( T a b l e 1, s i t e 9d) and t o t h e N18'E ( T a b l e 1, s i t e s 9 a , 9b, 9c). Grouping a l l t h e normal s l i c k e n s i d e s measured i n t h e Cuzco b a s i n ( F i g u r e 7, s i t e 91, we o b t a i n a s o l u t i o n o f good q u a l i t y ( s i t e 9 , Table 11, 1 6 s t r i a t i o n s having an a n g l e ( t , S ) l e s s e r t h a n 20" (see histogram 9, F i g u r e 7 ) . Tne stress f i e l d i n t h e Cuzco b a s i n i s enough homogeneous t o g i v e a q u i t e r e l i a b l e r e s u l t . The azimuth of t h e minimum p r i n c i p a l s t r e s s is N8"E. Therefore t h e Recent s t a t e of stress i n t h e Cuzco b a s i n a p p e a r s t o be c h a r a c t e r i z e d by a n e a r l y N-S t r e n d i n g e x t e n s i o n as i n t h e Western C o r d i l l e r a (see above s e c t i o n ) and on t h e northern Bolivian Altiplano. The V i l c a n o t a r i v e r f a u l t system. The r o u g h l y E-W t r e n d i n g Cuzco f a u l t zone i s r e l a y e d t o t h e SE b; a NNW-SSE s t r i k i n g f a u l t system which c o n t r o l s the d i r e c t i o n o f t h e V i l c a n o t a r i v e r v a l l e y (VF on Sébrier e t al.: /” Quaternary Normal and Reverse Faulting I * i r r S 6 b r i e r e t al.: Quaternary Normal and Reveirse F a u l t i n g 743 c F i g u r e 1). I t s l e n g t h i s a b o u t 9 0 km- from Urcos t o Langui Lay0 lake ( F i g u r e 8 a ) and i t s width v a r i e s between 1 0 and 20 kr. The V i l c a n o t a r i v e r f a u l t . sys t e m s e p a r a t e s t h e Meso-Cenozoic High P l a t e a u t e r r a n e s t o t h e SW from t h e P a l e o z o i c f o r m a t i o n s of t h e E a s t e r n C o r d i l l e r a t o t h e NE. It v a n i s h e s t o t h e SE a t t h e n o r t h w e s t e r n t e r m i n a t i o n of t h e A l t i p l a n o basin. F a u l t movements h a v e produced an u p l i f t of t h e E a s t e r n F i g . 4. ( o p p o s i t e ) Normal f a u l t d a t a from P a c i f i c Lowlands and Western C o r d i l l e r a used t o compute s o l u t i o n s of T a b l e 1 ( l o c a t i o n s on F i g u r e 1). Numbers o u t s i d e stereonets r e f e r t o data inside the h i s t o g r a m s . Arrows a t t a c h e d t o f a u l t t r a c e s correspond t o t h e measured s l i p v e c t o r s s (WuIff s t e r e o n e t , lower hemisphere). Thick segments on f a u l t t r a c e s and histograms show d e v i a t i o n s between measured S and p r e d i c t e d t s l i p v e c t o r f o r each f a u l t plane. Large b l a c k arrows g i v e azimuths of t h e minimum G 3 computed p r i n c i p a l ' s t r e s s d i r e c t i o n s . Note t h a t t h e y s t r i k e n e a r l y N-S f o r a l l t h e analyzed s i t e s . (A) Normal f a u l t s p r e a d d a t a from P a c i f i c Lowlands and from High Andes. Large numbers o u t s i d e t h e s t e r e o n e t r e f e r t o l o c a t i o n of t h e s i t e s ( F i g u r e 11, and s m a l l numbers r e f e r t o f a u l t d a t a . F a u l t k i n e m a t i c s a r e i n good agreement w i t h r o u g h l y N-S t r e n d i n g l e n g t h e n i n g . (BI Compressional and e x t e n s i o n a l d i r e c t i o n s deduced from f o c a l mechanisms of 11 e a r t h q u a k e s l o c a t e d under t h e t r a n s i t i o n a l zone between P a c i f i c Lowlands and High Andes (.data o b t a i n e d from a l o c a l s e i s m i c network, depth f o c i between 1 2 and 40 km Grange, 1983). E x t e n s i o n a l and compressional q u a d r a n t s a r e superimposed and t h u s d e f i n e common e x t e n s i o n a l and compressional zones. A counting g r i d i s b u i l t on t h e lower hemisphere w i t h p o i n t s as c e n t e r s of c i r c l e s whose s u r f a c e s a r e 1%o f t h e hemispere s u r f a c e . Numbers on s t e r e o n e t B r e p r e s e n t t h e number of t i m e s such a d e f i n e d small c i r c l e i s common t o t h e e x t e n s i o n a l zone d e f i n e d as above ( d e n s i t y diagram, Wulff s t e r e o n e t , lower hemisphere). Ten f o c a l mechanisms d e f i n e two s m a l l a r e a s (number 1 0 and shaded a r e a s ) which r e s p e c t i v e l y c o n t a i n t h e 'common e x t e n s i o n a l d i r e c t i o n ( d i v e r g e n t b l a c k arrows) and t h e common compressional d i r e c t i o n s t r i k i n g roughly N105OE (convergent b l a c k arrows). One f o c a l mechanism (Grange's event 836) i s n o t i n agreement with t h e o t h e r 1 0 s o l u t i o n s . C o r d i l l e r a with r e s p e c t t o t h e High P l a t e a u . S h o s h o n i t i c Quaternary volcanoes ( L e f e v r e , 1973) crop o u t along t h e Vilcanota valley. Evidences of t h e most r e c e n t f a u l t i n g a r e l o c a t e d mainly 5-10 km west of t h e V i l c a n o t a v a l l e y along a 70-km-long l i n e a m e n t ( F i g u r e 8 a ) . This i s u n d e r l i n e d by a s e r i e s of l a c u s t r i n e b a s i n s whose a l t i t u d e s range between 3650 and 3950 m. The most important of them a r e t h e Pomacanchi l a k e t o t h e NW and t h e Langui Layo l a k e t o t h e S E ( F i g u r e 8b). S e v e r a l t i m e s , small h i s t o r i c a l e a r t h q u a k e s ( S i l g a d o , 1978) have d e s t r o y e d v i l l a g e s a l o n g t h i s lineament ( c r o s s e s on F i g u r e 8b). Their f o c i were e s t i m a t e d t o be v e r y shallow. NW o f t h e Pomacanchi l a k e , a 6km-long f a u l t t r a c e i s c l e a r l y seen i n t h e f i e l d and on t h e a e r i a l photographs (Suarez e t a l . , 1984 F i g u r e s 15 and 141, and a l s o on Landsat imagery ( F i g y r e 8b). T h i s Pomacanchi f a u l t has a N140 E s t r i k e and a 60"-70" d i p t o t h e SW; i t e x i b i t s a 50-m normal .throw o f Quaternary age. It c u t s a l l u v i a l conglomeratic f a n s r e l a t e d t o t h e p e n u l t i m a t e g l a c i a l epoch ( n o t a c c u r a t e l y d a t e d b u t more t h a n 0.1 m.y.1. However , 'where streams c r o s s t h e f a u l t , t h e two l a s t a l l u v i a l t e r r a c e s do n o t show any evidences of o f f s e t . Taking i n t o a c c o u n t t h e accepted chronology of a l l u v i a l formations i n s o u t h Peru ( S é b r i e r e t al., 19821, t h e l a s t f a u l t movement i s Recent, roughly between t h e l a s t and t h e p e n u l t i m a t e g l a c i a l epochs, b u t does n o t appear a c t i v e (i.e., l a s t movement o l d e r t h a n 10,000 y e a r s B .P. However, some p a r t s of t h e V i l c a n o t a r i v e r f a u l t s y s t e m must be a c t i v e as shown by t h e h i s t o r i c a l s e i s m i c i t y and f r e s h s c a r p l e t a f f e c t i n g t h e present-day morphology n o r t h of t h e Langui v i l l a g e ( s t a r 11, F i g u r e 8 a ) . Three s t r i a t e d f a u l t p l a n e s have been measured on t h e s o u t h e a s t e r n p a r t of t h e Pomacanchi f a u l t ( F i g u r e 1, p o i n t 10). They show a normal s i n i s t r a l s t r i k e - s l i p movement ( d a t a 10: 1, 2, 3, F i g u r e 4 , A). These l i m i t e d d a t a do not p e r m i t computation of t h e e x t e n s i o n a l d i r e c t i o n . However, as o t h e r spread f a u l t d a t a of s o u t h e r n P e r u , t h e y are i n agreement w i t h a N-S t r e n d i n g e x t e n s i o n ( F i g u r e 4 , A). The Mataro f a u l t s . Ten k i l o m e t e r s WNW of t h e n o r t h w e s t e r n t e r m i n a t i o n of t h e T i t i c a c a l a k e (Lago de Arapa), a t an e l e v a t i o n of 3950 m ( F i g u r e 1, p o i n t 121, t h e l a c u s t r i n e Mataro formation r e p r e s e n t s d e p o s i t s of t h e lower P l e i s t o c e n e T i t i c a c a l a k e (Lavenu e t al., 1984). %o small >. SQbrier e t al.: 7 50 TABLE 1. Site 1 5 6-7 8 9 . 9a-b-c 9d 13 13b 13c * Quaternary Normal and Reverse F a u l t i n g Parameters of t h e D e v i a t o r i c S t r e s s Tensors Computed From t h e Quaternary and Recent Normal F a u l t s of t h e High Andes and P a c i f i c Lowlands ND Latitude S 8' 16' 8' 12' 15'22' 16'11' 17'28' 15'381 13'30' 13'30' 13'301 1&'41' 14'411 14'411 19' 13' 6' 18' 6' 9' Princioal Stress Directions Longitude a l o 2 u 3 W Azimuth Dip Azimuth Dip Azimuth Dip 75'091 72'02' 70'281 72'01' 71'56' 71'56' 71'56' 69'30' 69'301 69'301 115' 121' 115' 161' 324' 184' 321' 121' 170' 099' 84' 71' 75' 82' 8 O' 82' 74' 81' 80' 80' 282' 282' 266' 2 79' o9 7' 287' 09 4' 265' 26 7' 267' 06' 18' 13' 04' 07' 02' 11' 07' 01' 10' 012' 014' 357' 009' 188' 018' 186' 356' 356' 357' o1O 06' O 7' O 7' O 7' 08' 11' 05' 10' 02' R 0.79 O. 7 1 0.83 0.77 0.42 0-59 0.39 0.79 O , 77 0.76 These p a r a m e t e r s a r e computed from s u p e r f i c i a l Quaternary and Recent normal f a u l t s o f P a c i f i c Lowlands ( s i t e s 1, 5 , and 6-71 and of High Andes ( s i t e s 8 , 9 , 9a-b-cy 9 d , 1 3 , 13b, and 13c). S i t e l o c a l i z a t i o n s a r e shown o n F i g u r e 1. N D i s t h e number of t r i a t e d f a u l t p l a n e s used t o compute t h e s o l u t i o n s . Azimuths a r e measured clockwise from n o r t h ; d i p is toward the measured azimuth. R = a12-a'l/a'3-a11 i s t h e "stress r a t i o " o r "shape f a c t o r 1 ' of t h e s t r e s s t e n s o r . I t s v a l u e v a r i e s between two extremes: O as al2 = a l l and 1 a s d 2 = ~ 1 3 . Computed normal f a u l t s a r e on s t e r e o n e t s o f Figures 4 and 7. f a u l t s have been observed on a 10-m-high f l a n k of an i n t e r m i t t e n t stream, c u t i n t o t h e Mataro formation. They have an E-W s t r i k e and a 70" d i p t o t h e n o r t h w i t h a 10- t o 20-cm normal throw. They a r e a n t i t h e t i c f a u l t s w i t h r e s p e c t t o major f a u l t s bordering t h e l a k e T i t i c a c a t o t h e NE. Although t h e y are s m a l l , t h e s e f a u l t s may be i n d i c a t i v e of t h e Quaternary deformation on t h e A l t i p l a n o because t h e y a r e s i t u a t e d between t h e V i l c a n o t a r i v e r f a u l t system and t h e B o l i v i a n A l t i p l a n o Quaternary f a u l t s d e s c r i b e d by Lavenu (1978). Moreover, t h e i r k i n e m a t i c s ( d a t a 1 2 : 1, 2 , F i g u r e 4 , A) a r e a l s o i n agreement w i t h a N-S s t r i k i n g l e n t h e n i n g . Quaternary Normal F a u l t i n g i n t h e High Basins of t h e Eastern C o r d i l l e r a ---- North of Lake T i t i c a c a , s e v e r a l Quaternary intermontane b a s i n s a r e s i t u a t e d w i t h i n t h e c e n t r a l p a r t of t h e E a s t e r n C o r d i l l e r a a t an e l e v a t i o n of 4000-5000 m ( F i g u r e 1, p o i n t s 1 3 , 1 4 , an CA, CB, CR). Evidence of Quaternary normal f a u l t i n g have been observed mainly in the Ananea b a s i n ( F i g u r e 1, p o i n t 1 3 ) but a l s o i n t h e Peruvian p a r t of t h e U l l a U l l a b a s i n ( F i g u r e 1, p o i n t 1 4 ) . The Ananea b a s i n f a u l t s . The WNW-ESE t r e n d i n g Ananea b a s i n has a mean e l e v a t i o n of 4600 m ( F i g u r e 1, p o i n t 1 3 ) . As f o r t h e Altiplano, i t s general s t r u c t u r e r e s u l t s mainly from Neogene compressional deformations. The P l i o - P l e i s t o c e n e Ananea d e p r e s s i o n i s superimposed on t h e ESE t e r m i n a t i o n of a broad s y n c l i n o r i u m i n t h e c e n t e r o f which Oligo-Miocene f o r m a t i o n s c r o p o u t ; t h i s s y n c l i n o r i u m extends t o t h e NW as f a r as t h e Crucero basin. This Ananea b a s i n ( F i g u r e 9 ) i s i n f i l l e d by P l i o c e n e p a l u s t r i n e sediments and by s e v e r a l P l e i s t o c e n e moraines and outwash d e p o s i t s ( F o r n a r i e t a l . , 1982). I n t h i s b a s i n , w e measured Quaternary normal f a u l t s a t t h r e e d i f f e r e n t p o i n t s (13a, 13b, 13c on F i g u r e 9): t h r e e a t Viscachani (13a), s i x a t Rinconada (13b) , and n i n e a t Pampa Blanca ( 1 3 ~ ) . Each of t h e s e t h r e e p o i n t s i s less t h a n 5 km d i s t a n t from each o t h e r . Normal f a u l t s have been observed along d i s t a n c e s t h a t r a n g e between s e v e r a l decameters t o s e v e r a l hectometers. T h e i r throws v a r y from s e v e r a l d e c i m e t e r s up t o 6 m. These normal f a u l t s p o s t d a t e compressional t e c t o n i c s which deformed P l i o c e n e and e a r l y Q u a t e r n a r y d e p o s i t s . Moreover, some o f them o f f s e t moraines which a r e r e l a t e d t o the p e n u l t i m a t e g l a c i a l epoch ( o l d e r The age of t h e t h a n 100,000 y e a r s B.P.). normal f a u l t i n g i s t h u s Quaternary. F a u l t s having an E-W d i r e c t i o n a r e n e a r l y p u r e l y 72-00 , Fig. 5a. S t r u c t u r a l s k e t c h of Cuzco b a s i n f a u l t s ( F i g u r e 1, p o i n t 9). 1, Recent Quaternary f o r m a t i o n s ; 2, e a r l y P l e i s t o c e n e San S e b a s t i a n f o r m a t i o n ; 3 , Paleogene r e d b e d s ; 4, Cretaceous Yuncaypata formation. Roads: d o t t e d l i n e s . Tambomachay a c t i v e normal f a u l t : t h i c k l i n e s (downthrown block h a t c h u r e d ) . F a u l t k i n e m a t i c s analyzed i n t h e v i c i n i t y of t h e f a u l t ( s t a r s a , b , c ; s i t e s 9a-9c, F i g u r e 7) and n e a r San S e b a s t i a n (star d ; s i t e 9d, F i g u r e 7) show normal s l i p w i t h a s m a l l . s i n i s t r a l component on t h e major f a u l t . North of San S e b a s t i a n , e a r l y P l e i s t o c e n e l a c u s t r i n e beds form k i l o m e t r i c monoclines (arrows s t r i k e toward t h e h i g h e r d i p ) which r e s u l t from compressional deformation n o t p r e s e n t i n Recent Q u a t e r n a r y d e p o s i t s . 1 S é b r i e r e t al.: Q u a t e r n a r y Normal and Reverse F a u l t i n g km O F i g . 5b. A e r i a l photograph c o v e r i n g c e n t r a l p a r t of Cuzco b a s i n ( s e e F i g u r e 5 a ) . Most prominent s t r u c t u r e s are t h e two segments of t h e Tambomachay a c t i v e f a u l t ( s m a l l b l a c k arrow h e a d s ) . Analyzed f a u l t s i t e s a r e marked by s o l i d c i r c l e s a , b, d as o n F i g u r e 5a. TAM, Tambomachay; PU, Puca P u c a r a Lncaic a r c h e o l o g i c a l s i t e s ; S. SEB, Cuzco suburb of San S e b a s t i a n . NNE o f San S e b a s t i a n , e a r l y P l e i s t o c e n e formation appears as a broad n e a r l y s y m e t r i c a n t i c l i n e . normal; f a u l t s having a NE-SW d i r e c t i o n a r e normal w i t h a d e x t r a l s t r i k e - s l i p component, w h i l e f a u l t s s t r i k i n g NW-SE a r e normal w i t h a s i n i s t r a l component ( F i g u r e 7, s i t e 13). These kinematics a g r e e with a r o u g h l y N-S l e n g t h e n i n g . Computation of the p r i n c i p a l stress d i r e c t i o n s confirms t h i s f i r s t inference. We f i r s t processed s e p a r a t e l y t h e d a t a from Rinconada (13b) and Pampa Blanca ( 1 3 ~ )s i t e s ( F i g u r e 7). The numerical r e s u l t s are good and comparable; t h e y , r e s p e c t i v e l y , show N4"W and N3"W t r e n d i n g extensional principal s t r e s s d i r e c t i o n s (13b and 1 3 c , T a b l e 1). Both c o m p u t a t i o n s used few d a t a , and t h u s r e s u l t s a r e r a t h e r p o o r l y c o n s t r a i n e d . We p r o c e s s e d a l t o g e t h e r t h e 1 8 d a t a measured a t t h e t h r e e s t u d i e d p o i n t s . This second computation h a s been p o s s i b l e because a l l t h e d a t a had been c o l l e c t e d i n a small area and d i s p l a c e m e n t s a r e comparable i n magnitude. The o b t a i n e d s o l u t i o n (13, T a b l e 1) y i e l d s a N4"W t r e n d i n g e x t e n s i o n . This s o l u t i o n i s of good q u a l i t y , t h e ( t , s ) a n g l e s b e i n g l e s s e r t h a n 15" f o r a l l . -. 1- S é b r i e r e t al.: Q u a t e r n a r y Normal and Reverse F a u l t i n g 7 53 Fig. 6. F i e l d view of t h e Tambomachay f a u l t seen toward t h e n o r t h from Puca P u c a r a ( l o c a t i o n : F i g u r e s 5a and 5b). A huge, south f a c i n g s c a r p ( a r r o w s ) dominates t h e 2-m-high s c a r p l e t ( s m a l l arrow heads). This i n d i c a t e s t h a t t h e Tambomachay f a u l t has moved s e v e r a l t i m e s d u r i n g P l e i s t o c e n e , producing a cumulative normal throw which i s about 300 m. t h e f a u l t s (see h i s t o g r a m 13, F i g u r e 7). I t i s s i m i l a r t o t h e 1 3 a and 13c s o l u t i o n s ( s e e Table 1). Thus i n t h e Ananea b a s i n t h e Quaternary e x t e n s i o n appears t o have a n e a r l y N-S d i r e c t i o n . The Tuncuchi f a u l t s . The U l l a U l l a b a s i n , s i t u a t e d a t a 4500-m e l e v a t i o n , h a s a f l a t topography. However, n e a r Cerro Tuncuchi ( F i g u r e 1, p o i n t 14) a meander of t h e Suches r i v e r p e r m i t s a good o b s e r v a t i o n of two f a u l t s on a 25-m-high n a t u r a l s e c t i o n . These f a u l t s have a N-S and N28"E s t r i k e , a s t e e p d i p t o t h e e a s t , and 0.5-lm normal throws. They a f f e c t a sandy conglomeratic a l l u v i a l t e r r a c e of e a r l y Quaternary a g e and are covered by a d i s t a l outwash t e r r a c e which i s n o t o f f s e t . S t r i a t i o n s show normal d e x t r a l s t r i k e - s l i p movements ( d a t a 14: 1, 2, F i g u r e 4 , A). Although t h e s e f a u l t s a r e seen on a small exposure, they seems t o b e i n d i c a t i v e of t h e Quaternary normal e x t e n s i o n i n t h e c e n t r a l p a r t of t h e E a s t e r n C o r d i l l e r a s i n c e t h e y are i n good agreement w i t h a N-S l e n t h e n i n g demonstrated i n t h e nearby Ananea b a s i n . Other examples o f Quaternary normal f a u l t i n g i n t h e E a s t e r n C o r d i l l e r a may i n c l u d e t h e N70°E t r e n d i n g f a u l t s t h a t c u t moraine d e p o s i t s l o c a t e d t o t h e n o r t h of t h e C o r d i l l e r a d e l Ausangate (Audebaud, 1973) and t h e NE edge of t h e N125'E t r e n d i n g Ccatca b a s i n (CA and CB on F i g u r e 1). U n f o r t u n a t e l y , we have n o t been a b l e t o c a r r y o u t f i e l d s t u d i e s on t h e s e faults. COMPRESSIONAL TECTONICS I N THE SUBANDES From t h e snow-capped summits of t h e n o r t h e a s t e r n edge of t h e High Andes, toward t h e Amazonian f o o t h i l l s t h e a l t i t u d e d e c r e a s e s markedly; more than 5 km of v e r t i c a l v a r i a t i o n i s observed a l o n g a 40-km d i s t a n c e . The s t u n t e d v e g e t a t i o n of t h e d r y High Andes i s r e p l a c e d by t h e dense t r o p i c a l j u n g l e of t h e r a i n y subAndes. F i e l d c o n d i t i o n s become t h u s very d i f f i c u l t , and u s e f u l o u t c r o p s e x i s t o n l y a l o n g t h e t o r r e n t i a l r i v e r banks ( F i g u r e 7 54 S é b r i e r e t al.: Quaternary Normal and Reverse F a u l t i n g fib N35 6'-10' F i g . 7. Normal f a u l t d a t a o f t h e High Andes used t o compute s o l u t i o n s of Table 1. See l o c a t i o n s on F i g u r e s 1, 5 a , and 9. Wulff s t e r e o n e t , lower hemisphere. Symbols as on F i g u r e 4 . - S é b r i e r e t al.: 755 Quaternary Normal and Reverse F a u l t i n g 72' . i 71' - Cordillera del I4- IL - 'I 7; 7; S t r u c t u r a l s k e t c h of t h e V i l c a n o t a r i v e r f a u l t system (High F i g . 8a. Andes, l o c a t i o n on f i g u r e 1, VF and p o i n t s 10 and 11). The r o u g h l y E-W t r e n d i n g Anta b a s i n and Cuzco b a s i n f a u l t system i s r e l a y e d t o t h e SE by t h e NNW-SSE s t r i k i n g V i l c a n o t a r i v e r f a u l t system. This f a u l t system d i s a p p e a r s t o t h e SE a t t h e n o r t h w e s t e r n t e r m i n a t i o n of t h e A l t i p l a n o . Thick s o l i d l i n e s a r e mapped normal f a u l t s ; dashed l i n e s are i n f e r r e d Quaternary f a u l t s seen on L a n d s a t images. C r o s s e s , v i l l a g e s d e s t r o y e d by s m a l l h i s t o r i c a l e a r t h q u a k e s ; shaded areas, snow-capped summits of t h e E a s t e r n C o r d i l l e r a ; s t i p p l e d areas, P l i o - Q u a t e r n a r y b a s i n s ; s o l i d p a t c h e s , s h o s h o n i t i c Quaternary v o l c a n o e s ; a s t e r i s k , Quaternary v o l c a n i c cone. O r i e n t a t i o n of t h e s k e t c h i s conform t o t h e Landsat image o r i e n t a t i o n of F i g u r e 8b. 10). Geological change is a l s o conspicuous, t h e E a s t e r n C o r d i l l e r a c o n s i s t s mainly of Precambrian t o lower P a l e o z o i c metamorphic and i n t r u s i v e r o c k s , whereas t h e sub-Andes a r e made o f Cenozoic continental deposits (Figure 11). The sub-Andean zone of s o u t h Peru i s 500 km long and about 50 km wide ( F i g u r e 1). It corresponds t o t h e n o r t h w e s t e r n p a r t of t h e N120"E t r e n d i n g segment of t h e sub-Andes which extends f o r 1200 km from t h e lower Urubamba r i v e r (11" 3 0 ' s ) t o t h e S a n t a Cruz ltelbow" (18"s). This narrow b e l t has an a l t i t u d e which r a n g e s between 300 and 1000 m and can be subdivided i n two p a r t s ( F i g u r e 1 1 ) : (1) The E a s t e r n C o r d i l l e r a Piedmont b a s i n s ( P i l l c o p a t a , Quince M i l , Candamo) form a s t r i n g of Neogene-Quaternary a l l u v i a l fan b a s i n s l o c a t e d on a f a u l t zone l i m i t i n g t h e sub- 7 56 S6brier e t al.: Q u a t e r n a r y Normal and Reverse F a u l t i n g Fig. 8b. Landsat image MSS 7 (N. 8-2225- 14074-701) c o v e r i n g most of t h e s t r u c t u r a l s k e t c h of t h e V i l c a n o t a r i v e r f a u l t system ( F i g u r e Ba). Snowcapped summits and Pomacanchi and Langui Layo l a k e s are r e a d i l y compared w i t h t h e s t r u c t u r a l sketch. Cuzco b a s i n f a u l t s , V i l c a n o t a r i v e r f a u l t system, and A l t i p l a n o n o r t h e r n b o r d e r f a u l t system a r e marked by small arrow heads. S c a l e i s given on F i g u r e 8a. Andes from t h e E a s t e r n C o r d i l l e r a . T h i s f a u l t zone i s l o c a t e d a t t h e f o o t of t h e High Andes, between 600 and 1000 m a l t i t u d e . Deformation i s c h a r a c t e r i z e d by r e v e r s e f a u l t i n g and t h r u s t i n g . ( 2 ) The sub-Andean h i l l s ( S a l v a c i o n , Mazuko), a 30- t o 40-km-wide zone, a r e formed by r i d g e s and v a l e s , t h e a l t i t u d e s of which a r e between 300 and 800 m. Deformation i s c h a r a c t e r i z e d by f o l d s and t h r u s t f a u l t s a f f e c t i n g Neogene t o e a r l y Quaternary sands and conglomerates. To t h e n o r t h , t h e sub-Andean zone i s bounded by t h e Madre d e Dios wide a l l u v i a l p l a i n which a p p e a r s t o be t h e present-day a g g r a d a t i o n a l piedmont. T h i s l i m i t between t h e sub-Andean h i l l s , where e r o s i o n p r e s e n t l y predominates, and t h e a g g r a d a t i o n a l r i v e r p l a i n should mark t h e a c t i v e sub-Andean t e c t o n i c f r o n t . Owing t o u n f a v o r a b l e f i e l d c o n d i t i o n s , o n l y f o u r a r e a s (Quince M i l , Mazuko, P i l l c o p a t a , and S a l v a c i o n ) have been analyzed. Taking advantage of two r o a d s , w e have l e a c h e d t h e s o u t h e r n Peru sub- Andes, and t h e n we have worked along t h e t o r r e n t i a l r i v e r banks ( F i g u r e 1 0 ) . E a s t e r n C o r d i l l e r a Piedmont b a s i n s : Quince M i l and P i l l c o p a t a --- The Quince M i l b a s i n i s s i t u a t e d a t a l t i t u d e s r a n g i n g between 500 and 900 m , i s 40 km long and 15,km wide, and i s i n f i l l e d by c o a l e s c i n g a l l u v i a l f a n s t h a t l i e unconformably upon f o l d e d beds whose ages a r e upper P a l e o z o i c , Cretaceous, and Paleogene. These a l l u v i a l f a n s i n c l u d e two s e r i e s : (1) an o l d e r one a t t r i b u t e d t o P l i o c e n e - e a r l y Quaternary, and (2) a younger one a t t r i b u t e d t o P l e i s t o c e n e and Holocene (Laubacher e t a l . , 19821. The o l d e r s e r i e s c o n s i s t s of some LO-m gray carbonaceous sands p r e s e r v e d i n channels and d i s c o r d a n t l y covered by about 250-m t o r r e n t i a l conglomerates t h a t a r e f a i r l y c o n s o l i d a t e d and weathered. The younger s e r i e s c o n s i s t s of u n c o n s o l i d a t e d a l l u v i a l f a n s and f l u v i a l t e r r a c e s . S e r i e s L h a s Fig. 9. Geological s k e t c h of t h e e a s t e r n p a r t of t h e Ananea b a s i n ( E a s t e r n C o r d i l l e r a , p o i n t 1 3 , F i g u r e 1). 1, Paleozoic f o r m a t i o n s ; 2 , P l i o c e n e Arcoaja f o r m a t i o n ; 3, e a r l y Quaternary moraines and outwash d e p o s i t s ; 4 , Recent and upper Q u a t e r n a r y moraines; 5, Recent outwash d e p o s i t s ; 6, Recent a l l u v i a l f a n s . Quaternary normal f a u l t s have been observed a t t h r e e d i f f e r e n t p l a c e s : a t Viscachani ( s t a r a ) , a t Rinconada (star b ) , and a t Pampa Blanca ( s t a r c ) . 7 58 Sébrier e t al.: Quaternary Normal and Reverse F a u l t i n g Fig. 10. E-W s t r i k i n g , s o u t h dipping r e v e r s e f a u l t along t h e Palcamayo r i v e r , Q u i n c e M i l b a s i n ( s i t e 1 7 a., F i g- u r e 11). F a u l t ( t h i c k arrows) a f f e c t s conglomerates of t h e Cancao formation, probably of e a r l y Q u a t e r n a r y age. F a u l t kinematics a r e i n agreement with a N-S s h o r t e n i n g (17a, F i g u r e 1 2 ) . been deformed by r e v e r s e f a u l t i n g , whereas no deformations have been observed i n s e r i e s 2. Thus t h e l a s t deformations t h a t w e observed a r e n o t Recent and, as d i s c u s s e d below, a r e probably of e a r l y Quaternary age. W e measured r e v e r s e and s t r i k e - s l i p f a u l t s a t two d i f f e r e n t p o i n t s : along t h e Palcamayo r i v e r ( F i g u r e 1 2 , s i t e 17a) and along t h e Huajiumbre r i v e r ( F i g u r e 1 2 , s i t e 17b). These two p o i n t s b e i n g 1.5 km d i s t a n t . A t t h e Palcamayo s i t e , s t r i a t i o n s a s s o c i a t e d w i t h r e v e r s e f a u l t s ( F i g u r e 10) were measured on f l a t s i d e s of pebbles. Owing t o t h e bad q u a l i t y o f Amazonian f o r e s t o u t c r o p s , g e n e r a l l y it has n o t been p o s s i b l e t o measure t h e throws of f a u l t s , b u t they can be e s t i m a t e d t o be of t h e o r d e r of 1 m. A t both s i t e s , f a u l t s s t r i k i n g E-W have a n e a r l y p u r e l y r e v e r s e s l i p , f a u l t s s t r i k i n g NE-SW have a s i n i s t r a l r e v e r s e s l i p , and f a u l t s s t r i k i n g NW-SE have a d e x t r a l r e v e r s e s l i p ( F i g u r e 12, s i t e s L7a and 17b). These kinematics a g r e e w i t h a roughly N-S s h o r t e n i n g . , D e s p i t e t h e poor q u a l i t y of t h e d a t a , computations of t h e p r i n c i p a l s t r e s s d i r e c t i o n s (17a, 17b, Table 2) g i v e good s o l u t i o n s ( s e e h i s t o g r a m s 1 7 a , 1 7 b , i F i g u r e 1 2 ) and confirm t h i s i n f e r e n c e . The maximum (compression) p r i n c i p a l d e v i a t o r i c s t r e s s d i r e c t i o n s s t r i k e t o t h e N195" ( s i t e 17a) and N16" ( s i t e 17b). T h e r e f o r e t h e l a s t f a u l t i n g observed i n t h e Quince M i l b a s i n i s compressional and corresponds t o a n e a r l y NNE t r e n d i n g s h o r t e n i n g . These r e s u l t s a r e confirmed by o b s e r v a t i o n s made i n t h e P i l l c o p a t a b a s i n , which i s l o c a t e d some 50 lun t o t h e WNW of t h e Quince M i l b a s i n i n a s i m i l a r s t r u c t u r a l s i t u a t i o n ( F i g u r e 11). It i s s i t u a t e d a t an a l t i t u d e between 700 and 1100 m, and as t h e Quince M i l b a s i n , it i s i n f i l l e d by c o a l e s c i n g a l l u v i a l f a n s . A t Ubaldina, 2 lan south o f P i l l c o p a t a ( F i g u r e 11, s i t e 161, i n f l u v i a l conglomerates s i m i l a r t o t h o s e of t h e o l d e r s e r i e s 1 o f t h e Quince M i l b a s i n , we measured 12 s t r i a t i o n s a s s o c i a t e d with r e v e r s e f a u l t s ( F i g u r e 12, s i t e 1 6 ) . These s t r i a t i o n s p o s t d a t e o l d e r ones which correspond t o r o u g h l y E-W s h o r t e n i n g (M. S 6 b r i e r e t a l . , manuscript i n p r e p a r a t i o n , 1985). As i n t h e Quince M i l b a s i n , t h e k i n e m a t i c s of t h e l a s t f a u l t i n g t h a t w e observed a g r e e w i t h a roughly N-S s h o r t e n i n g . Although t h e s e d a t a are n o t e n t i r e l y i n agreement w i t h t h e hypotheses of t h e numerical model S é b r i e r e t al.: 759 Quaternary Normal and Reverse Fault'ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 l. . o 1 1 4 - 6 - , , , -6 I F i g . 11. S t r u c t u r a l s k e t c h showing s i t u a t i o n of t h e s t u d i e d Subandean segment of s o u t h e r n Peru ( F i g u r e 1, p o i n t s 1 5 , 1 6 , 1 7 , 18). Two s t r u c t u r a l s i t u a t i o n s are seen. The E a s t e r n C o r d i l l e r a Piedmont b a s i n s ( P i l l c o p a t a , Q u i n c e M i l , Candamo) a r e l o c a t e d on a r e v e r s e f a u l t zone ( t h i c k l i n e ) between 600 and 1000 m of a l t i t u d e . The Subandean h i l l s , between 300 and 800 m of a l t i t u d e ( S a l v a c i o n , Mazuko), a r e c h a r a c t e r i z e d by f o l d i n g and high-angle t h r u s t i n g ( t h i c k lines w i t h a t t a c h e d s o l i d t r i a n g l e s ) . 1, Recent Quaternary a l l u v i a l d e p o s i t s ; 2 , Neogene and e a r l y Quaternary f o r m a t i o n s ; 3, Paleogene red beds and upper Cretaceous s a n d s t o n e s ; 4 , Precambrian t o lower Paleozoic metamorphic and i n t r u s i v e rocks of t h e E a s t e r n C o r d i l l e r a ; 5 , a n t i c l i n e ; 6 , s y n c l i n e . Numbered stars g i v e s i t u a t i o n of analyzed s i t e s ( F i g u r e 12). A l l deformations a r e compressional, r e s u l t i n g from N-S trending shortening. (see t h e appendix 1, t h e computed s o l u t i o n ( 1 6 , Table 2 ) i s f a i r l y good ( s e e histogram 1 6 , F i g u r e 1 2 ) and g i v e s a N187" s t r i k i n g maximum p r i n c i p a l s t r e s s (u 1). Thus i n two piedmont b a s i n s of t h e E a s t e r n C o r d i l l e r a t h e l a s t deformations t h a t w e observed i n d i c a t e a roughly N-S t r e n d i n g compression. I 3 r' The Sub-Andean H i l l s : Mazuko and Salvacion I -_. The E a s t e r n C o r d i l l e r a piedmont b a s i n s are s e p a r a t e d from t h e sub-Andean h i l l s by a small range of pre-Neogene rocks ( F i g u r e 11) t h a t i s e i t h e r a f a u l t e d a n t i c l i n o r i u m (i.e., Puente Inambari a n t i c l i n e between Quince M i l and Mazuko) or a complex f a u l t e d and f o l d e d zone (i.e., Pongo de Conec range between t h e P i l l c o p a t a b a s i n and t h e S a l v a c i o n s y n c l i n e ) . The Mazuko area i s l o c a t e d 2 0 km t o t h e NE o f t h e Quince M i l b a s i n , along t h e lower Inambari r i v e r , a t an a l t i t u d e t h a t ranges between 300 and 650 m ( F i g u r e 11). Upper Cretaceous t o e a r l y Quaternary d e p o s i t s are s i m i l a r t o t h o s e of t h e Quince M i l b a s i n excepted t h a t t h e Neogene t o e a r l y Quaternary d e p o s i t s (Mazuko formation) a r e t h i c k e r and do n o t r e s t unconformably on t h e Paleogene r e d beds. Thus t h e r e i s no c l e a r evidence f o r an . Sébrier e t al.: TABLE 2. P a r a m e t e r s of t h e D e v i a t o r i c S t r e s s Tensors Computed From Reverse S t r i k e - S l i p Vector Gata of t h e South Peruvian Sub-Andes Site ND Latitude S 15 16 17a 21 12'50' 12' 55' 13'12' 17b 18a 18b 7 61 Q u a t e r n a r y Normal and Reverse F a u l t i n g 12 16 13 26 13 13'11' 13'05' 13'08' Principal Stress Directions Longitude c1 a 2 a 3 W Azimuth Dip Azimuth Dip Azimuth Dip 71'20' 71'23' 70'42' 70'42' 70'23' 70'23' 191' 187' 195' 016' 016' 003' 0.5' 02' 01' 08' 16' 08' 282' 277' 105' 284' 283' 094' 05' 04' 32' 10' 11' 05' 095' 071' 287' 145' 160' 215' 85' 86' 58' 77' 70' 80' R 0.63 0.77 0.63 0.83 0.54 0.57 These p a r a m e t e r s are computed from t h e r e v e r s e s t r i k e - s l i p v e c t o r d a t a of t h e s o u t h Peruvian sub-Andes. Same a b r e v i a t i o n s as on T a b l e 1. L o c a l i z a t i o n s of t h e s i t e s are shown o n F i g u r e 1; d a t a are shown on s t e r e o n e t s of F i g u r e 12. Oligo-Miocene compressional phase i n t h e Mazuko area. The Neogene-early Quaternary Mazuko f o r m a t i o n , a t l e a s t 3000 m t h i c k , i s f o l d e d . A s e t of f i v e o r s i x Quaternary f l u v i a l t e r r r a c q s rests unconformably on t h e l a t e r formation. We d i d n o t observe any t r a c e of f a u l t i n g a f f e c t i n g t h e s e t e r r a c e s . Thus, as i n Quince M i l b a s i n , t h e l a s t deformations are seen t o a f f e c t d e p o s i t s which a r e a t t r i b u t e d t o e a r l y Quaternary. Dissymetric f o l d s a s s o c i a t e d w i t h s t e e p l y dipping reverse f a u l t s s t r i k e approximately N100" t o N 1 l O o E , and a f f e c t t h e Mazuko conglomerates. Vergence is toward the NE, i.e., toward t h e Amazonian p l a i n . Two s i t e s have been a n a l y z e d : one a l o n g Chiforongo r i v e r ( F i g u r e 11, s i t e 18b) and t h e o t h e r one a l o n g Dos d e Mayo r i v e r ( F i g u r e 11, s i t e 1 8 a ) 2.5 km t o t h e SSW and 3 lan t o t h e NNE o f Mazuko, r e s p e c t i v e l y . A t Chiforongo, s t r i a t e d r e v e r s e and s t r i k e - s l i p f a u l t s were measured mainly i n t h e c l a y e d sands of t h e Mazuko formation. A s i n o t h e r sub-Andean l o c a l i t i e s , t h e bad q u a l i t y of o u t c r o p s only p e r m i t s e s t i m a t i o n of t h e f a u l t throws which a r e g e n e r a l l y of t h e o r d e r of 1 m. A t Dos d e Mayo, s t r i a t i o n s were measured on f l a t s i d e s of cobbles w i t h i n a 20" dipping f o l d limb. They might o n l y r e f l e c t l o c a l deformation w i t h i n t h i s f o l d limb w i t h o u t any r e g i o n a l s i g n i f i c a n c e . 4 Fig. 12. ( o p p o s i t e ) Reverse s t r i k e - s l i p v e c t o r . d a t a from sub-Andes of s o u t h Peru used t o compute s o l u t i o n s of T a b l e 2 ( s i t e s i t u a t i o n s on F i g u r e s 1 and 11). Wulff s t e r e o n e t , lower hemisphere. Same symbols as on F i g u r e 4. However, a t both s i t e s , r e v e r s e and s t r i k e - s l i p movements are such t h a t t h e y a g r e e w i t h roughly N-S s h o r t e n i n g ( F i g u r e 1 2 , . s i t e s 18a and 18b). Despite t h e poor q u a l i t y of t h e d a t a , w i t h r e s p e c t t o t h e model hypotheses, computation g i v e s s o l u t i o n s of f a i r l y good q u a l i t y (see h i s t o g r a m s 18a and 1 8 b , F i g u r e 12) w i t h a N3" t r e n d i n g compression a t Chiforongo (18b, T a b l e 2) and a N16" t r e n d i n g compression a t Dos de Mayo (18a, T a b l e 2). Thus, i n t h e sub-Andean f o l d s t h e l a s t d e f o r m a t i o n s observed a r e compressional and r e s u l t from r o u g h l y NyS s h o r t e n i n g . Another example of f a u l t i n g a s s o c i a t e d w i t h sub-Andean f o l d s i s v i s i b l e i n t h e NW-SE s t r i k i n g S a l v a c i o n s y n c l i n e ( F i g u r e 1 0 , p o i n t 15). It i s l o c a t e d some 100 km t o t h e WNW of Mazuko and on t h e ' NE s i d e o f t h e Pongo d e Conec f a u l t e d range t h a t s e p a r a t e s it from t h e P i l l c c p a t a b a s i n . T h i s Salvacion s y n c l i n e c o n s i s t s of L a t e Cretaceous t o Paleogene r e d beds conformably covered by gray-brown c l a y e d s a n d s t h a t are i n t e r b e d d e d upward w i t h conglomerates. These sands and conglomerates are v e r y s i m i l a r t o t h e Mazuko formation (Laubacher e t a l . , 1982) and a r e probably a l s o of Neogene age. The uppermost p a r t of t h e Salvacion s y n c l i n e c o n s i s t s of f l u v i a l conglomerates t h a t could be e q u i v a l e n t t o t h e upper conglomerates of t h e Mazuko formation and t h u s could be of e a r l y Quaternary age. No unconformity h a s been observed i n t h e Salvacion s y n c l i n e . N e v e r t h e l e s s , owing t o t h e l a c k of good o u t c r o p s , t h e r e l a t i o n s between t h e uppermost conglomerates and t h e Neogene sands below have n o t been c l e a r l y observed. Strong d i f f e r e n c e s o f d i p of t h e two f o r m a t i o n s could i n d i c a t e Sébrier e t al.: 7 62 Quaternary Normal and Reverse F a u l t i n g 70'30 1734 njo I ?Ojd Fig. 13. L o c a t i o n of t h e Chulibaya a c t i v e normal f a u l t ( F i g u r e 1, p o i n t 7). F a u l t belongs t o t h e Incapuquio f a u l t zone ( I F o n F i g u r e 11, s e p a r a t i n g the High Andes from t h e P a c i f i c Lowlands. R e a c t i v a t i o n of t h e f a u l t c r e a t e d a south f a c i n g s c a r p l e t ( t h i c k l i n e hatchured toward t h e downthrown block, s e e F i g u r e 1 4 ) . Chulibava s i t e (6-7, F i g u r e 4 ) i s marked by a star. Arrow head i n d i c a t e s l o c a t i o n ' o f F i g u r e 14. an unconformity between them. Whatever t h e case, t h e deformations of t h e s e uppermost conglomerates are t h e youngest t h a t we observed i n t h i s a r e a s i n c e no evidence of deformation has been observed i n t h e Quaternary f l u v i a l t e r r a c e s t h a t l i e unconformably on t h e Salvacion s y n c l i n e . Upstream from S a l v a c i o n v i l l a g e , along t h e r i v e r , s t r i a t i o n s on f l a t s i d e s of c o b b l e s of the uppermost conglomerates have been measured w i t h i n a 20" d i p p i n g f o l d limb ( F i g u r e 12, s i t e 15). A s i n t h e o t h e r sub-Andean l o c a l i t i e s , t h e s e d a t a a g r e e w i t h roughly N-S t r e n d i n g s h o r t e n i n g . Bearing i n mind t h e same r e s t r i c t i o n s as f o r t h e Dos de Mayo s i t e , we processed the d a t a with t h e numerical method. The o b t a i n e d s o l u t i o n ( s i t e 1 5 , T a b l e 2) i s of good q u a l i t y ( s e e h i s t o g r a m 15, F i g u r e 1 2 ) and g i v e s a N191" t r e n d i n g compression. S l i p movements deduced from S t r i a t i o n s have been measured i n s i x sub-Andean l o c a l i t i e s situated i n various s t r u c t u r a l s e t t i n g s : reverse faulting, t h r u s t i n g a s s o c i a t e d w i t h f o l d i n g , and d i s c o n t i n u o u s deformation of f o l d limbs. A l l evidence a n e a r l y N-S t r e n d i n g compression. U n f o r t u n a t e l y , the age of t h i s N-S t r e n d i n g compression i s n o t v e r y p r e c i s e l y c o n s t r a i n e d . According t o Laubacher e t a l . (1982) it a f f e c t s e a r l y Quaternary d e p o s i t s . The Quaternary a l l u v i a l t e r r a c e s c o v e r i n g them unconformably do n o t show any evidence of deformation. It i s not known whether compressional deformation i s s t i l l a c t i v e , s i n c e no f o c a l mechanisms a r e a v a i l a b l e i n t h i s p a r t i c u l a r south Peru segment of t h e sub-Andes. However, i t i s l i k e l y t h a t t h i s N-S t r e n d i n g compression i s of e a r l y Quaternary age, a s i t i s w e l l known i n t h e whole High Andes and P a c i f i c Lowlands o f Peru and B o l i v i a ( S é b r i e r e t a l . , 1982). This i s a l s o s t r o n g l y supported by fo'cal mechanisms which, evidence a present-day rdughly E-W d i r e c t i o n of compression in t h e sub-Andes of c e n t r a l P e r u , s o u t h B o l i v i a , and NW Argentina. EXTENSIONAL TECTONICS IN THE PACIFIC LOWLANDS F a u l t Zone S e p a r a t i n g -From P a c i f i c Lowlands High Andes From t h e P a c i f i c Piedmont ( P a c i f i c Lowlands) t o t h e Western C o r d i l l e r a , t h e S é b r i e r e t al.: .e ..- Q u a t e r n a r y Normal and Reverse F a u l t i n g 7 63 F i g . 14. Western p a r t from the s o u t h f a c i n g s c a r p l e t (arrow) of t h e a c t i v e Chulibaya normal f a u l t o f f s e t i n g up t o 2.5 m t h e topographic s l o p e p a r t l y covered by s c r e e s of Holocene age ( l o c a t i o n on F i g u r e 13). e l e v a t i o n g e n e r a l l y i n c r e a s e s from about 2000 m up t o more t h a n 4000 m along a 20km d i s t a n c e . This t r a n s i t i o n a l t o p o g r a p h i c zone o f t e n c o i n c i d e s w i t h a f r a c t u r e d b e l t , f a u l t s having g e n e r a l l y a high a n g l e d i p . This f a u l t b e l t r e s u l t s from a long t e c t o n i c h i s t o r y beginning i n t h e Upper Cretaceous. T h r u s t s and r e v e r s e , s t r i k e s l i p , and normal f a u l t s are superimposed ( V i c e n t e e t al., 1979; S é b r i e r e t al., 1979, 1982). Here, w e focused our s t u d y o n t h e a c t i v e movements and on t h e f i n a l kinematics of t h e f a u l t s observed r e s p e c t i v e l y i n t h e r e g i o n of Chulibaya, SE o f Arequipa ( F i g u r e 1, p o i n t s 6 and 7) , and of L l u c l l a , NW o f Arequipa ( F i g u r e 1, p o i n t 5). The Chulibaya a c t i v e normal f a u l t s . The Chulibaya a c t i v e normal f a u l t ( F i g u r e 1, p o i n t 7 ) belongs t o t h e f a u l t b e l t , l o c a l l y known as t h e Incapuquio f a u l t zone ( I F on F i g u r e 1). It i s l o c a t e d upstream from t h e Locumba r i v e r , about 2 km s o u t h I: o f t h e Chulibaya hamlet ( F i g u r e 13). The f a u l t a f f e c t s t h e Paleocene Toquepala v o l c a n i c formation. I t s t r i k e s N80°E t o N120"E and d i p s 70" t o t h e s o u t h . R e a c t i v a t i o n of t h e f a u l t c r e a t e d a south f a c i n g s c a r p l e t ( F i g u r e 14) which o f f s e t up t o 2 . 5 m t h e topographic s l o p e p a r t l y covered by s c r e e s o f Holocene age. S c a r p l e t and o p p o s i t e d i p p i n g s l o p e form a narrow furrow. In some p l a c e s , it has been f i l l e d , p r o b a b l y d u r i n g an e a r t h q u a k e , by screes which do n o t have d e s e r t v a r n i s h comparable w i t h t h e s u p e r f i c i a l s c r e e s . I n o t h e r p l a c e s , t h i s furrow is u n d e r l i n e d by puddles of d r y mud which has been s u p p l i e d by t h e l a s t d e s e r t r a i n f a l l . I n t h e P e r u v i a n d e s e r t t h e p e r i o d i c i t y of major r a i n f a l l s i s about one o r two p e r c e n t u r y ( L e t t a u and L e t t a u , 1978). I n t h e R i o Curibaya v a l l e y ( F i g u r e 131, i n h a b i t a n t s a s s e r t t h a t l a s t heavy shower o c c u r r e d approximately i n 1948. They do n o t remember any major s e i s m i c event p r i o r t o 7 64 Sébrier e t al.: t h i s d a t e , we assume t h a t t h e Chulibaya normal f a u l t has n o t been r e a c t i v a t e d s i n c e a t l e a s t one c e n t u r y . Along t h e Chulibaya f a u l t w e have observed only t h r e e s t r i a t e d s l i c k e n s i d e s ( d a t a 1, 2 , 3 o n s t e r e o n e t 6-7, F i g u r e 4 ) . They confirm t h e n e a r l y pure normal component on f a u l t s having a E-W d i r e c t i o n . A t Cerro Garita ( F i g u r e 1, p o i n t 6 ) nearby Toquepala, 30 km t o t h e WNW of Chulibaya, we observed f i v e a d d i t i o n a l normal f a u l t s t h e s t r i a t i o n s of which correspond t o t h e l a s t movement along t h e Incapuquio f a u l t zone ( d a t a 5-8 on s t e r e o n e t 6-7, F i g u r e 4 ) . Kinematics o f most of t h e f a u l t s show a N-S lengthening. The Chulibaya and Cerro G a r i t a f a u l t s are r e g i o n a l f a u l t s of a comparable magnitude, and we have assumed t h e r e f o r e t h a t t h e deformation, i n t h e r e g i o n under c o n s i d e r a t i o n , i s homogeneous enough t o p r o c e s s t h e d a t a t o g e t h e r . The o b t a i n e d s o l u t i o n (6-7, Table 1 ) g i v e s a N3'W s t r i k i n g e x t e n s i o n u 3. This s o l u t i o n i s of good q u a l i t y f o r t h e two s e t s of d a t a , t h e a n g l e s ( t , S ) being l e s s e r than 10" f o r a l l t h e d a t a (see histogram 6-7, F i g u r e 4 ) . However, t h e obtained s o l u t i o n i s n o t s t r o n g l y cons t r a i n e d due t o t h e o r i e n t a t i o n s of t h e f a u l t p l a n e s which are n o t w e l l d i s t r i b u t e d . The kinematics o f t h e a c t i v e normal Chulibaya f a u l t i s i n agreement with a NS t r e n d i n g- extension. The normal movement on t h e L l u c l l a f a u l t . The L l u c l l a f a u l t ( F i g u r e 1, p o i n t l o c a t e d i n t h e Rio Sihuas v a l l e y _, . 60 km t o t h e WNW of t h e c i t y o f Arequipa. It l i m i t s t h e Precambrian rocks of t h e Western C o r d i l l e r a from t h e Oligo-Miocene c o n t i n e n t a l d e p o s i t s of t h e P a c i f i c Piedmont ( F i g u r e 1 5 ) . This f a u l t zone, which occupies t h e same s t r u c t u r a l s i t u a t i o n as t h a t of t h e Incapuquio f a u l t zone ( F i g u r e 1, p o i n t s 6 and 7 1 , a l s o e x h i b i t s a complex t e c t o n i c h i s t o r y . On t h e major f a u l t p l a n e s t h e most important movements r e s u l t from r e v e r s e s t r i k e - s l i p or r e v e r s e s l i p . Normal and normal s t r i k e s l i p s t r i a t i o n s ( F i g u r e 4, s i t e 5 ) p o s t d a t e t h e above compressional deformations and appear t o r e s u l t from t h e l a s t period of a c t i v i t y of t h e f a u l t zone. Unfortunately, a t L l u c l l a t h i s e x t e n s i o n a l t e c t o n i c s is n o t p r e c i s e l y dated. I t i s younger than t h e compressional s t r u c t u r e s which deformed t h e Oligo-Miocene d e p o s i t s (Moquegua formation). On t h e o t h e r hand, t h e l a c k of morphological s c a r p l e t seems t o indicate t h a t it is p r i o r t o t h e Holocene. Thus t h i s e x t e n s i o n a l t e c t o n i c s I ... - Quaternary Normal and Reverse F a u l t i n g could be o f P l i o c e n e - P l e i s t o c e n e age. The 1 6 normal s t r i a t i o n s of t h e u l t i m a t e p e r i o d of a c t i v i t y a r e i n agreement w i t h a N-S l e n g t h e n i n g ( F i g u r e 4, s i t e 5). Computation has been performed w i t h t h e s e data. The o b t a i n e d s o l u t i o n ( 5 , Table 1) g i v e s a N 1 4 " E s t r i k i n g "extension" u 3 ; t h i s s o l u t i o n i s of good q u a l i t y , a s 1 5 s t r i a t i o n s have ( t , S ) a n g l e lesser than 20" ( s e e histogram 5 , Figure 4). Thus t h e youngest r e a c t i v a t i o n s of t h e i i u c l i a f a u l t and of t h e Lncapuquio f a u l t zone, both of which l i m i t t h e Western C o r d i l l e r a from t h e P a c i f i c Lowlands, appear t o r e s u l t from a N-S t r e n d i n g e x t e n s i o n a l t e c t o n i c s . The N140 "E t r e n d i n g , 70" s o u t h d i p p i n g Pampacolca f a u l t , l o c a t e d 60 km t o t h e Nw of L l u c l l a on t h e same f a u l t b e l t (PF on Figure 11, has probably been r e a c t i v a t e d by t h i s N-S e x t e n s i o n as it o f f s e t s e a r l y Quaternary a l l u v i a l f a n s and shows a normal throw of some 20 m. However, i t s k i n e m a t i c s has n o t been s t u d i e d i n more d e t a i l due t o unfavorable outcrops. The Normal F a u l t s Along ----- t h e P a c i f i c Coast The c o a s t a l area of south Peru l i e s above a zone of high s e i s m i c i t y which o c c u r s e i t h e r a t t h e c o n t a c t between t h e oceanic and c o n t i n e n t a l p l a t e s o r w i t h i n t h e oceanic s l a b . I n c o n t r a s t , few seismic f o c i a r e c l e a r l y located within t h e c o n t i n e n t a l wedge of t h e o v e r r i d i n g p l a t e , and they have not provided f o c a l mechanisms. The i n t e r p l a t e earthquakes a r e c h a r a c t e r i z e d by t h r u s t-type f o c a l mechanisms, whereas t h e f o c i l o c a t e d w i t h i n t h e oceanic s l a b show normal f a u l t i n g mechanisms ( S t a u d e r , 1973, 1975; Isacks and Barazangi, 1977; Malgrange e t al., 1981; Chinn and I s a c k s , 1983). Microseismic d a t a o b t a i n e d from l o c a l networks do n o t i n d i c a t e such a simp1.e p a t t e r n (Grange e t a l . , 1984b), normal, r e v e r s e , and s t r i k e - s l i p f a u l t s n o t being c l e a r l y s e p a r a t e d i n space. Moreover, a double-layered Benioff zone i s n o t observed i n s o u t h e r n Peru (Bevis and I s a c k s , 1984). Many Q u a t e r n a r y f a u l t s with normal throws have been r e p o r t e d a l l along t h e P a c i f i c c o a s t (Lavenu and S o u l a s , 1976). Our o b s e r v a t i o n s confirm t h a t t h e Quaternary and Recent t e c t o n i c s i s c h a r a c t e r i z e d by normal f a u l t s whose extension i s of small magnitude, throws being always l e s s t h a n few meters. We have . 1 7200 F i g . 15. S t r u c t u r a l s k e t c h of t h e L l u c l l a f a u l t ( F i g u r e 1, p o i n t 5). Normal movements of t h e f a u l t ( h a t c h u r e d toward t h e downthrown b l o c k ) , p o s t d a t i n g compressional d e f o r m a t i o n s , a r e n o t p r e c i s e l y dated b u t could be o f P l i o - P l e i s t o c e n e age. 1, P l i o - P l e i s t o c e n e c o n t i n e n t a l d e p o s i t s ; 2, Oligo-Miocene d e p o s i t s (Moquegua f o r m a t i o n ) ; 3 , Precambrian rocks of t h e Western C o r d i l l e r a i n t r u d e d by t h e c o a s t a l b a t h o l i t h . S o l i d s t a r (number 5) i n d i c a t e s t h e L l u c l l a s i t e . U m VI . 7 66 S6brier e t al.: Q u a t e r n a r y Normal and Reverse F a u l t i n g Fig. 16. Near San Juan de Marcona ( p o i n t l a , F i g u r e I), Quaternary marine t e r r a c e (QI o v e r l i e s unconformably P l i o c e n e marine b e d s (Pl. Photograph shows a N120"E s t r i k i n g normal f a u l t (F, normal movement i n d i c a t e d by t h i c k arrows) w i t h a s m a l l 0.5-m downthrow (see datum 1 on s t e r e o n e t 1, F i g u r e 4 ) . The s t e e p , or s l i g h t l y o v e r t u r n e d , d i p of t h e curved f a u l t p l a n e seen near t h e s u r f a c e i s r e l a t e d t o t h e upward d e c r e a s e of t h e v e r t i c a l load i n p o o r l y c o n s o l i d a t e d sediments. T h i s g i v e s an apparent r e v e r s e f a u l t geometry (F with t h i n arrows) on t h e s u r f a c e ( n o r t h r i g h t ) . a l s o observed some r e v e r s e f a u l t s , b u t t h e y a r e g e n e r a l l y due t o e a r l y Quaternary compression. However, some small r e v e r s e f a u l t s w i t h o f f s e t s l e s s t h a n few meters a f f e c t middle Quaternary formations n e a r Tacna and Chincha ( F i g u r e 1). U n f o r t u n a t e l y , f i e l d evidence i s n o t c l e a r l y demonstrative. I f they were of t e c t o n i c o r i g i n , t h i s should mean t h a t a t t h e s u r f a c e along t h e c o a s t t h e Recent s t a t e of stress f l u c t u a t e s around a n e u t r a l p o s i t i o n b u t with a p r e f e r e n t i a l e x t e n s i o n a l regime of small magnitude. Although Q u a t e r n a r y normal f a u l t s have been r e p o r t e d i n many p l a c e s along t h e P a c i f i c c o a s t (Lavenu and S o u l a s , 19761, S é b r i e r e t al.: s t r i a t e d f a u l t p l a n e s have been observed o n l y a t f o u r l o c a l i t i e s : Marcona ( p o i n t I), Chala ( p o i n t 21, C a l a v e r i t a s ( p o i n t 3 ) , and La Planchada ( p o i n t 4 , F i g u r e 1). Normal f a u l t i n g a l o n g t h e P a c i f i c c o a s t o p p o s i t e t h e Nazca r i d g e ( t h e Marcona a r e a ) . The Marcona a r e a i s l o c a t e d on t h e P a c i f i c c o a s t , o p p o s i t e t h e a s e i s m i c Nazca r i d g e ( F i g u r e 1, p o i n t 1). A s e t o f Quaternary stepped marine t e r r a c e s i s w e l l devsloped i n t h i s area, t h e o l d e s t b e i n g a t an a l t i t u d e of 700 m ( L e g a u l t , 1963). They l i e unconformably on Pliocene marine beds ( S é b r i e r and de Muizon, 1982). I n t h i s a r e a t h e most r e c e n t f a u l t s a r e normal w i t h throws ranging between s e v e r a l decimeters and s e v e r a l meters. They p o s t d a t e compressional deformations which a f f e c t t h e P l i o c e n e marine beds. Moreover , some of them o f f s e t Quaternary marine t e r r a c e s ( F i g u r e 16). Unfortunately, owing t o t h e sandy n a t u r e of t h e m a t e r i a l , t h e normal f a u l t p l a n e s do not e x h i b i t s t r i a t i o n s t h a t could i n d i c a t e t h e s l i p vectors. I n t h e Marcona a r e a w e observed o n l y e i g h t normal s t r i a t e d f a u l t planes. Two were measured a t San Juan de Marcona h a r b o r ( F i g u r e 1, p o i n t l a ) where a f r e s h r o a d c u t shows normal f a u l t s o f f s e t i n g a marine, upper P l e i s t o c e n e t e r r a c e . F i v e o t h e r s l i c k e n s i d e s were measured a t A l t o Grande ( F i g u r e 1, p o i n t l b ) , S O km t o t h e ESE of San J u a n and one a t Aguada de Lomas ( F i g u r e 1, p o i n t I C ) , 7 km SE o f A l t o Grande. They show c l e a r l y a n o r t h :o NE s t r i k i n g l e n t h e n i n g ( F i g u r e 4 , s i t e 1). T h i s i s i n agreement w i t h t h e occurrence i n t h e Marcona a r e a of numerous n o n s t r i a t e d Quaternary normal f a u l t s which have a r o u g h l y E-W d i r e c t i o n (Lavenu and Soulas , 1976). A poorly c o n s t r a i n e d r e s u l t should b e expected from computation of t h e s e e i g h t measured s l i c k e n s i d e s s i n c e d a t a are few and spread over a l a r g e area. However, we have processed them assuming t h a t t h e t e n s i o n a l deformation i s s u f f i c i e n t l y homogeneous i n view of t h e s c a l e of t h e s t u d y and because of t h e widespread E-W normal f a u l t s which occur over t h e whole a r e a . The o b t a i n e d s o l u t i o n (1, T a b l e 1 and F i g u r e 4 ) g i v e s a N12" s t r i k i n g Ifextensiontf 6 3 . I n t h e Marcona area t h e youngest Quaternary t e c t o n i c s i s e x t e n s i o n a l and i s c h a r a c t e r i z e d , as i n o t h e r s o u t h Peruvian l o c a l i t i e s , by a roughly N-S t e n s i o n a l d i r e c t i o n . Normal f a u l t i n g on t h e P a c i f i c c o a s t s o u t h of Nazca area. South of 1 5 " 4 0 ' S , ' 7 67 Quaternary Normal and Reverse F a u l t i n g t h e C o a s t a l C o r d i l l e r a 1000- t o 1300-mh i g h s c a r p f a c e s t h e P a c i f i c Ocean. This south f a c i n g major s c a r p i s t h e r e s u l t o f movements on a major f a u l t zone l i m i t i n g t h e marine f o r e a r c b a s i n s from t h e P a c i f i c Lowlands. This f a u l t zone does n o t o u t c r o p c l e a r l y on land and seems t o be mainly l o c a t e d o f f s h o r e . The c o a s t a l s c a r p i s notched by marine t e r r a c e s of upper Oligocene t o upper Quaternary age ( S é b r i e r e t a l . , 1979; Huaman, 19851, and t h i s k i l o m e t r i c s c a r p is mainly i n h e r i t e d from t h e O1 ig o -Mio c ene t e c t o n i c s U n f o r t u n a t e l y , T e r t i a r y , and moreover Quaternary, d e p o s i t s a r e s c a r c e so t h a t Q u a t e r n a r y movements on t h e abovementioned f a u l t zone are not p r e c i s e l y known; it can only be s t r e s s e d t h a t a l l t h e observed f a u l t s show small displacements. The Chala f a u l t s : Chala Bay ( F i g u r e 1, p o i n t 2) i s l o c a t e d about 100 km ESE of San Juan d e Marcona. A set o f Quaternary stepped marine t e r r a c e s , t h e h i g h e s t r e a c h i n g an a l t i t u d e of 250 m y o u t c r o p s around- t h e bay ( L a h a r i e , 1970). They l i e unconformably on T e r t i a r y marine beds. A s i n t h e Marcona area, t h e youngest Q u a t e r n a r y deformation t h a t we observed i s c h a r a c t e r i z e d by small normal f a u l t s , whose p l a n e s g e n e r a l l y do n o t e x h i b i t s t r i a t i o n s . We measured o n l y t h r e e s t r i a t e d s l i c k e n s i d e s t h a t c u t upper P l i o c e n e t o e a r l y Quaternary sandy c l a y marine d e p o s i t s l o c a t e d on t h e western p a r t of Chala Bay. They i n c l u d e a SW block downthrown s e v e r a l decimeters and show a normal s i n i s t r a l movement ( d a t a 2: 1, 2 , 3, F i g u r e 4 , A). These t h r e e d a t a do n o t permit computation of t h e e x t e n s i o n a l d i r e c t i o n b u t a r e i n agreement w i t h a roughly N-S lengthening. The C a l a v e r i t a s and L a Planchada f a u K : The upper P l i o c e n e marine beds of t h e La Planchada formation outcrou on b o t h s i d e s of t h e mouth of t h e Rio Pescadores ( F i g u r e 1, p o i n t s 3 and 4 ) (Beaudet e t a l . , 1976). These formations e x h i b i t s e v e r a l superimposed deformations: (1) normal f a u l t s contemporaneous w i t h Pliocene sedimentation, (2) compressional d e f o r m a t i o n s , and ( 3 ) normal f a u l t s which c u t deformations 1 and 2. A t C a l a v e r i t a s ( F i g u r e 1, p o i n t 3 ) and L a Planchada ( F i g u r e 1, p o i n t 4 ) we have measured two s t r i a t e d normal f a u l t p l a n e s ( d a t a 3-1 and 4-1, F i g u r e 4 , A) whose NE block i s downthrown s e v e r a l decimeters. Although t h e s e are small, they show t h a t i n t h i s a r e a , kinematics of t h e Quaternary normal . --- -- 7 68 S 6 b r i e r e t al.: Q u a t e r n a r y Normal and R e v e r s e F a u l t i n g S é b r i e r e t al.: Quaternary Normal and Reverse F a u l t i n g 7 69 f a u l t s i s i n agreement with t h e g e n e r a l N-S lenghening ( F i g u r e 4 , A) v i s i b l e i n t h e P a c i f i c Lowlands. QUATERNARY AND RECENT STATE OF STRESS I N THE ANDES OF SOUTHERN PERU Q u a t e r n a r y F a u l t i n g , F o c a l Mechanisms, @ Andes of Southern S t a t e of Stress i n ------ LI I C m u Within t h e Andes of s o u t h e r n P e r u , B o l i v i a , and n o r t h Argentina-Chile , which are s i t u a t e d above a 30" e a s t d i p p i n g s l a b , s e i s m i c i t y i s moderately a c t i v e a l o n g t h e sub-Andes. No f o c a l mechanisms have been p u b l i s h e d f o r t h e s o u t h P e r u v i a n sub-Andes. Sub-Andes of s o u t h Peru are c l e a r l y a f f e c t e d by compressional t e c t o n i c s (Laubacher e t a l . , 1982). S t r u c t u r a l a n a l y s i s of f o l d s and f a u l t s a f f e c t i n g e a r l y Quaternary a l l u v i a l d e p o s i t s shows a roughly N-S s h o r t e n i n g ( F i g u r e s 1 2 and 1 7 ) . Is t h i s N-S s h o r t e n i n g t h e r e s u l t of t h e e a r l y Q u a t e r n a r y compression as known i n many p l a c e s of t h e Andes o f Peru ( S é b r i e r e t al., 19821, o r i s i t t h e d i r e c t i o n o f . l a t e Quaternary-Recent s h o r t e n i n g , t h e s t r i k e of which would have been induced by t h e i n h e r i t e d N120"E o r i e n t a t i o n of t h e sub-Andes of s o u t h Peru and n o r t h B o l i v i a ? The poor q u a l i t y of o u t c r o p s i n t h e Amazonian f o r e s t does n o t p e r m i t s t r u c t u r a l a n a l y s i s i n t h e Recent Q u a t e r n a r y d e p o s i t s . Comparison w i t h t h e Recent s t a t e of s t r e s s i n t h e Andes o f c e n t r a l Peru (M. S é b r i e r e t al.,, manuscript i n p r e p a r a t i o n , 19851 argues i n f a v o r of t h e f i r s t p r o p o s i t i o n . I n c e n t r a l Peru t h e stress p a t t e r n i s similar t o t h a t of s o u t h Peru ( F i g u r e 1 7 ) . N-S t r e n d i n g e x t e n s i o n p r e v a i l s i n t h e High Andes, and t h e l a s t compressional s t r u c t u r e s a f f e c t i n g e a r l y Quaternary f o r m a t i o n s i n t h e sub-Andes r e s u l t from N-S compression as i n s o u t h Peru. However, f o c a l mechanisms i n t h e c e n t r a l Peruvian subAndes ( S t a u d e r , 1975; Suarez e t al., 1983) show t h a t t h e a c t i v e compression s t r i k e s roughly E-W. I n a d d i t i o n , f o c a l mechanisms i n sub-Andes of s o u t h B o l i v i a and NW A r g e n t i n a (Chinn and I s a c k s , 1983; J o r d a n e t a l . , 1983) a l s o show E-W s t r i k i n g compression. T h i s s t r o n g l y s u p p o r t s t h e f a c t t h a t i n s o u t h Peru as i n c e n t r a l P e r u N-S compression i n sub-Andes i s of e a r l y Q u a t e r n a r y age and t h a t a c t i v e compression s t r i k e s E-W. I n t h e High Andes and P a c i f i c Lowlands, t h e youngest Quaternary deformations S é b r i e r e t al.: 770 ** u-1 4% Q u a t e r n a r y Normal and Reverse F a u l t i n g A n a l y s i s of t h e exposed s t r i a t i o n s p e r m i t s d a t e r m i n a t i o n of t h e s l i p v e c t o r s o f t h e s e normal f a u l t s . Computations performed o n 81 s t r i a t e d f a u l t p l a n e s from s i x d i f f e r e n t areas show t h a t t h e r e c e n t d e f o r m a t i o n s r e s u l t from a s t a t e of s t r e s s ( F i g u r e 181, such as t h e minimum p r i n c i p a l s t r e s s (a 3) t h a t s t r i k e s r o u g h l y N-S, t h e i n t e r m e d i a t e p r i n c i p a l s t r e s s (a 2 ) E-W, whereas t h e maximum p r i n c i p a l s t r e s s (a 1 ) i s n e a r l y v e r t i c a l ( T a b l e 1 and F i g u r e s 1 7 and 18). The s t r e s s r a t i o TABLE 3. Data Used t o Estimate the Magnitude o f S t r e t c h i n g Produced by N-S Trending E x t e n s i o n i n t h e High Andes and P a c i f i c Lowlands a l o n g t h e 72" Meridian Between Cuzco and Mollendo-Southern P e r u F i g . 18, P r i n c i p a l s t r e s s d i r e c t i o n computed from s l i p v e c t o r s o f Quaternary and Recent normal f a u l t s of t h e High Andes and P a c i f i c Lowlands of s o u t h Peru. Recent Quaternary f a u l t i n g i n these regions r e s u l t s from a s t a t e of s t r e s s such as CT 1 (compressional a x i s ) i s v e r t i c a l and Q 3 ( " t e n s i o n a l " a x i s ) s t r i k e s between N5'W and N18"E, c l e a r l y r e s u l t from normal and normal s t r i k e - s l i p f a u l t i n g . The major f a u l t s which are p r e s e n t e d i n t h i s paper (CuzcoTambomachay, V i l c a n o t a , Huambo-Cabana Conde, Chulibaya, etc., f a u l t s ) have l e n g t h s r a n g i n g between 5 and 20 km. Cumulative Quaternary normal throws a r e g e n e r a l l y g r e a t e r t h a n 100 m. Moreover, t h e s e f a u l t s a r e seen b o t h i n Quaternary d e p o s i t s and i n bedrock of Precambrian t o lower T e r t i a r y age. C l e a r l y , t h e i r k i n e m a t i c s are n o t c o n t r o l l e d by l a n d s l i d e e f f e c t s . Where Q u a t e r n a r y . f a u l t s a r e o f smaller magnitudes a n d / o r are observed o n l y i n p o o r l y c o n s o l i d a t e d Quaternary sediments, t h e i r kinematics is i n agreement w i t h t h e N-S e x t e n s i o n deduced from a n a l y s i s of t h e major f a u l t s . I n t h e Western C o r d i l l e r a , r e c e n t normal f a u l t i n g i s contemporaneous w i t h v o l c a n i c a c t i v i t y . Thus it a p p e a r s r e a s o n a b l e t h a t t h e normal Quaternary f a u l t s described i n t h i s paper a r e n o t t h e r e s u l t of s u r f a c e e f f e c t s s u c h as l a n d s l i d e s b u t are r e p r e s e n t a t i v e of t h e s t a t e of s t r e s s a t l e a s t i n t h e upper p a r t of t h e c r u s t of t h e High Andes and P a c i f i c Lowlands. EC CZ WC IF PC s, D, deg deg N-90 N 120 N 100 N 120 N 120 55 50 55 65 60 p, deg Tv, m 85 200 400 400 200 500 75 80 70 75 - x, m 140 L L 361 315 121 330 1267 O 3% Middle t o Recent Q u a t e r n a r y d e p o s i t s b e i n g u n t i l t e d , i t i s supposed t h a t n o r o t a t i o n of t h e f a u l t planes has o c c u r r e d . S t r e t c h i n g (XI may be c a l c u l a t e d f o r each f a u l t u s i n g estimate v e r t i c a l throw t'hv), mean d i p ( D I , mean f a u l t s t r i k e ( S I , and t h e mean s t r i a t i o n p i t c h ( P l . Subsequentl y , N-S components of s t r e t c h i n g f o r each f a u l t h a v e t o b e added a l o n g t h e N-S s e c t i o n : X = Tv! sinD(-cosS/tgP+sinS.cosD). Data a r e t a k e n from t h e Ananea b a s i n ( 1 3 ) , E a s t e r n C o r d i l l e r a (EC); from Tambomachay f a u l t (9), Cuzco b a s i n (CZ); from T r i g a l t h e Western and Solarpampa f a u l t s ( 8 ) , C o r d i l l e r a (WCl; from t h e Incapuquio f a u l t ( 6 1 , ( I F ) and from Marcona area ( 1 , F i g u r e LI, P a c i f i c Coast (PC), t h e mean throw b e i n g e s t i m a t e d from t h e maximum e l e v a t i o n o f Q u a t e r n a r y marine t e r r a c e s . These d a t a i n d i c a t e t h a t s t r e t c h i n g between Cuzco and Mollendo a l o n g t h e N-S t r e n d i n g , 400-kml o n g s e c t i o n h a s a v a l u e of 0.3%. Study of f a u l t s h a s been d i s c o n t i n u o u s a l o n g t h i s s e c t i o n . We have supposed t h a t s t r e t c h i n g due t o s m a l l unsurveyed f a u l t s might be of t h e same o r d e r as s t r e t c h i n g due t o t h e major f a u l t s . Thus t o t a l s t r e t c h i n g i s p r o b a b l y of t h e o r d e r of 1% f o r t h e l a s t 1 o r 2 m.y. L S é b r i e r e t al.: Quaternary Normal and Reverse F a u l t i n g (R=u' 2 - ~ ~ 1 / ~ ~ 3 -h a~s ' v1a)l u e s r a n g i n g between 0.4 and 0.8. This i m p l i e s t h a t t h e minimum t tension al^^) p r i n c i p a l a x i s u 3 i s c l e a r l y d i f f e r e n t from t h e i n t e r m e d i a t e one o 2 and t h u s w e l l determined w i t h r e s p e c t t o t h e l a s t one. A s i m i l a r r e s u l t i s o b t a i n e d from g r a p h i c a l a n a l y s i s of 1 2 a d d i t i o n a l s t r i a t e d f a u l t p l a n e s from s i x o t h e r l o c a l i t i e s ( F i g u r e 4 , A). Thus 93 s t r i a t e d normal f a u l t p l a n e s demonstrate a N-S t r e n d i n g t e n s i o n a l t e c t o n i c s of Quaternary age. A s mentioned above , t h e s o u t h Peruvian Quaternary normal f a u l t s a r e e i t h e r s t i l l a c t i v e , o f f s e t Quaternary d e p o s i t s , o r p o s t d a t e compressional s t r u c t u r e s which a f f e c t P l i o c e n e and e a r l y Quaternary formations. The few r a d i o m e t r i c d a t e s o f Peruvian- Quaternary u n i t s do n o t p e r m i t p r e c i s e d e t e r m i n a t i o n of t h e t i m e d u r a t i o n o f t h e N-S t r e n d i n g t e n s i o n a l t e c t o n i c s . This depends mainly of t h e a c c u r a t e d a t i n g of t h e e a r l y q u a t e r n a r y compressional t e c t o n i c s . In t h e c e n t r a l Andes, two compressional e p i s o d e s are observed (Lavenu e t a l . , 1980; M e r c i e r , 1981; Lavenu, 1981; S 6 b r i e r e t al., 1982). They p r o b a b l y occurred between a b o u t 2 and 3 m.y. B.P.: on one hand, t h e y are younger than d a t e d l a t e P l i o c e n e beds and conglomeratic deposits assigned t o the e a r l y Quaternary ( S é b r i e r e t a l . , 1982) ; o n t h e o t h e r hand, t h e y are o l d e r t h a n s e v e r a l Quaternary u n i t s of assumed e a r l y t o l a t e Quaternary ages. Hence a c c o r d i n g to the presently available data the Quaternary t e n s i o n a l t e c t o n i c s seems t o have been a c t i v e d u r i n g t h e l a s t 1 o r 2 m.y. We estimate t h e h o r i z o n t a l s t r e t c h i n g produced by Quaternary e x t e n s i o n along t h e 72"W m e r i d i a n l i n e . T h i s c a l c u l a t i o n ( s e e T a b l e 3) is obviously a rough approximation and g i v e s o n l y an o r d e r of magnitude which appears t o be less than 1%.T h e r e f o r e t h e Quaternary N-S s t r e t c h i n g i s very small and cannot b e compared w i t h e x t e n s i o n r e p o r t e d e i t h e r i n back a r c s p r e a d i n g s e t t i n g s o r i n t h e i n t r a c o n t i n e n t a l Basin and Range province. Within t h e Western and e a s t e r n C o r d i l l e r a s , no t e l e s e i m i c f o c a l mechanisms a r e a v a i l a b l e . I n t h e Western C o r d i l l o r a , n e a r Chonta (CHO i n c i r c l e on F i g u r e 171, a composite f o c a l mechanism o f poor q u a l i t y according t o Grange (1983) and Grange e t a l . (1984b) has been determined from a l o c a l s e i s m i c network. It i s i n agreement w i t h N-S t r e n d i n g e x t e n s i o n . Beneath t h e High P l a t e a u of s o u t h c e n t r a l Peru (Stauder , 1975; Suarez i 77 1 e t a l . , 1983) one f o c a l mechanism ( 1 1 i n c i r c l e on F i g u r e 17) shows s t r i k e - s l i p f a u l t i n g w i t h a N-S s t r i k i n g T a x i s and a E-W P a x i s . This earthquake i s l o c a t e d w i t h i n t h e t r a n s i t i o n a l zone between t h e 30" d i p p i n g segment and t h e f l a t s u b d u c t i n g segment of c e n t r a l Peru. The Altiplano-Puna, above t h e 30" d i p p i n g s l a b , i s almost a s e i s m i c , s u g g e s t i n g t h a t t h e mechanical s t a t e i s n e a r l y n e u t r a l ( J o r d a n e t al., 1983). I n t h e s o u t h P e r u v i a n High Andes, g e o l o g i c a l o b s e r v a t i o n s c l e a r l y t e s t i f y an e x t e n s i o n a l s t a t e of s t r e s s (U 1 v e r t i c a l , N-S u 3 and E-W CT 2 being h o r i z o n t a l ) , b u t t h e magnitude of e x t e n s i o n a l d e f o r m a t i o n i s very small. A s i m i l a r s t a t e of s t r e s s has been suggested on t h e B o l i v i a n A l t i p l a n o (Lavenu, 1978). Below t h e P a c i f i c Lowlands of s o u t h P e r u , t h e f o c a l d e p t h s c a l c u l a t e d from teleseismic d a t a are n o t a c c u r a t e l y determined. Thus f o c a l mechanisms are n o t c l e a r l y r e l a t e d t o t h e deformation of t h e upper p l a t e , of t h e downgoing s l a b , o r of t h e i n t e r f a c e between t h e two p l a t e s . From a l o c a l s e i s m i c network, two groups of f o c a l mechanisms have been determined (Grange, 1983; Grange e t al., 1984b). Beneath t h e c o a s t a t a depth s h a l l o w e r t h a n 55 km, t h e y show a complex p a t t e r n of normal, s t r i k e - s l i p , and r e v e r s e f a u l t i n g which h a s n o t been e x p l a i n e d . Under t h e t r a n s i t i o n a l zone between t h e P a c i f i c Piedmont and t h e Western C o r d i l l e r a , a t d e p t h s r a n g i n g between 1 2 and 40 km, normal, r e v e r s e , and s t r i k e - s l i p f a u l t s o l u t i o n s a r e more homogeneous. They a r e i n agreement w i t h a N105"E s t r i k i n g compression ( F i g u r e 4 , B y and 4B i n c i r c l e on F i g u r e 1 7 ) . D i r e c t i o n of e x t e n s i o n i s n o t s t r o n g l y c o n s t r a i n e d , being i n a p l a n e normal t o t h e compressional d i r e c t i o n , and p o s s i b l y d i p s g e n t l y toward t h e NNE ( F i g u r e 4 , B I . I f c o r r e c t , t h e s t a t e of stress i s such t h a t o 2 i s v e r t i c a l , and d 3 s t r i k i n g N20" t o 30"E and u 1 s t r i k i n g N105 "E a r e h o r i z o n t a l . Whatever t h e c a s e , t h i s s t a t e of s t r e s s i s c l e a r l y d i f f e r e n t from t h a t observed a t t h e s u r f a c e (see F i g u r e 1 7 ) i n t h e whole P a c i f i c Lowlands ( v e r t i c a l d 1, u 3 s t r i k i n g N-S and u 2 s t r i k i n g E-W being h o r i z o n t a l ) . T h i s w i l l be d i s c u s s e d i n t h e n e x t s e c t i o n . A v a i l a b l e o f f s h o r e d a t a from t h e Peruvian margin (Johnson and Ness, 1981) seem t o demonstrate e x t e n s i o n a l t e c t o n i c s b u t do not p r o v i d e any evidence of a N-S e x t e n s i o n . Along t h e Peru-Chile t r e n c h , compressional s t r u c t u r e s have been 5. Km O: 50; 100- uZor3 Fig. 19. T e n t a t i v e model t o e x p l a i n t h e s t a t e of s t r e s s i n t h e Andes of s o u t h e r n Peru. P r l n c i p a l average l i t h o s p h e r i c s t r e s s ( s e t s of t h i n s o l i d arrows) i n excess t o t h e r e f e r e n c e (sea l e v e l ) l i t h o s t a t i c s t r e s s a r e u x x ( s t r i k i n g E-W), u yy ( s t r i k i n g N-S), and u zz ( v e r t i c a l ) ; u xx and u yy are c o n s i d e r e d a s f a i r l y c o n s t a n t ; u zz amount t o t h e weight of t h e topography. Convergence between Nazca and South American p l a t e s ( t h i c k arrows) is roughly p a r a l l e l t o u xx. In t h e sub-Andes, t e c t o n i c s is compressional (u xx>u yy>u z z ) , i.e., u 3 i s v e r t i c a l and u 1 i s h o r i z o n t a l . A s i m i l a r s t a t e of s t r e s s i s i n f e r r e d from f o c a l mechanisms a t t h e c o n t a c t between t h e two p l a t e s . In t h e High Andes, u zz i n c r e a s e s , then u zz>u xx>u yy; i.e., u 1 i s v e r t i c a l , O xx becomes u 2 , u 3 s t r i k e s N-S. I n t h e P a c i f i c Lowlands, according t o t h e model, t e c t o n i c s should be compressional. However, a t t h e s u r f a c e , N-S e x t e n s i o n p r e v a i l s , i n d i c a t i n g a d e c r e a s e of u x x v a l u e p o s s i b l y r e l a t e d t o t h e topographic e f f e c t of t h e deep oceanic t r e n c h . A t d e p t h , f o c a l mechanisms i n d i c a t e an E-W s t r i k i n g u 1 p r i n c i p a l s t r e s s , t h e v e r t i c a l p r i n c i p a l s t r e s s being u 2 o r u 3. 3a S é b r i e r e t al.: d e s c r i b e d (Schweller e t a l . , 1981) and few t h r u s t - t y p e f o c a l mechanisms from e a r t h q u a k e s l o c a t e d a t t h e c o n t a c t between t h e Nazca and South American p l a t e s show a n E-W t o NE-SW d i r e c t i o n of P axes ( S t a u d e r , 1975; Chinn and I s a c k s , 1983) ( s e e c i r c l e d 8 , 9 , and 10 on F i g u r e 17). The s t a t e of s t r e s s deduced from s t r u c t u r a l a n a l y s i s of Recent-Quaternary f a u l t s and from few f o c a l mechanisms i s shown on F i g u r e 1 7 . The High Andes and P a c i f i c Lowlands where t e n s i o n a l t e c t o n i c s o c c u r s are bounded by two zones of compressional deformation: t h e sub-Andes t o t h e e a s t and t h e Peru-Chile t r e n c h t o the w e s t . The s t a t e of s t r e s s i n t h e Andes of s o u t h e r n Peru and t h e e f f e c t of h i g h topography. toDonraDhv. I n reg ev i o n s where c r u s t a l , thickening is present, extensional t e c t o n i c s h a s been r e l a t e d t o t h e e f f e c t of high topography (Tapponnier and Molnar , 1976; Molnar and Tapponnier, 1978; Dalmayrac and Molnar, 1981; Cross and P i l g e r , 1982;. Suarez e t al., 1983; Froidevaux and I s a c k s , 1984). Topographic f e a t u r e s of l a r g e l a t e r a l e x t e n t are compensated a t depth by mass d e f i c i e n c i e s ( i s o s t a s y ) . The l a t t e r , c r u s t a l r o o t and/or hot asthenospheric m a t e r i a l , are buoyant. The f i r s t - o r d e r e f f e c t of such a l a r g e - s c a l e mass d i s t r i b u t i o n i s t o perturb the vertical lithospheric stress. The average l i t h o s p h e r i c v e r t i c a l stress a z z i n excess t o t h e r e f e r e n c e (sea l e v e l ) l i t h o s t a t i c stress amounts t o t h e weight o f t h e topography. The e x c e s s a v e r a g e l i t h o s p h e r i c horizontal stress a xx i s c o n s i d e r e d t o be f a i r l y c o n s t a n t , t h e s h e a r stress underneath t h e p l a t e b e i n g n e g l e c t e d (Dalmayrac and Molnar, 1981; Froidevaux and I s a c k s , 1984). Then i n lowlands, i f t e c t o n i c s is compressional, u xxzo zz, s o t h a t a 1 i s h o r i z o n t a l and o 3 v e r t i c a l . I n r e g i o n s of h i g h topography, G zz i n c r e a s e s and may exceed t s xx, s o t h a t u 3 becomes h o r i z o n t a l and u 1 v e r t i c a l ; t e c t o n i c s i s e x t e n s i o n a l . Such a two-dimensional a n a l y s i s could imply t h a t d i r e c t i o n o f e x t e n s i o n i n r e g i o n s of h i g h topography has t o be p a r a l l e l t o d i r e c t i o n of compression i n lowlands. That i s supposed i n Dalmayrac and Molnar s 1 a n a l y s i s of t h e s t a t e of s t r e s s i n c e n t r a l P e r u ; e x t e n s i o n i n C o r d i l l e r a Blanca i s presumed t o s t r i k e r o u g h l y p a r a l l e l t o compression i n t h e sub-Andes. S t r u c t u r a l a n a l y s i s of r e c e n t Quaternary f a u l t s of s o u t h Peru shows' t h a t . I . Quaternary Normal and Reverse F a u l t i n g < 773 t h e "extensional" u 3 d i r e c t i o n s t r i k e s between N5"W and N18'E ( F i g u r e 18). The same N-S e x t e n s i o n h a s a l s o been demonstrated i n C o r d i l l e r a Blanca (Mercier and S é b r i e r , 1981; Bonnot, 1984). On t h e o t h e r hand, as d i s c u s s e d above, where compressional d i r e c t i o n h a s been demonstrated i n t h e Andean c r u s t by f o c a l mechanisms, it s t r i k e s roughly E-W. T h e r e f o r e a three-dimensional approach must be i n v e s t i g a t e d . Here ( F i g u r e 1 9 ) t h e p r i n c i p a l average l i t h o s p h e r i c s t r e s s e s i n e x c e s s t o t h e r e f e r e n c e (sea l e v e l ) l i t h o s t a t i c stress a r e named u x x ( h o r i z o n t a l , s t r i k i n g E-W), u yy ( h o r i z o n t a l , s t r i k i n g N-SI, and u z z ( v e r t i c a l ) . Focal mechanisms and s t r u c t u r a l a n a l y s i s of r e c e n t Quaternary f a u l t s i n b o t h s o u t h e r n Peru and c e n t r a l Peru show t h a t o xx i s always t h e h o r i z o n t a l maximum p r i n c i p a l s t r e s s (a Hmax) and u yy t h e minimum one (u Hmin). I n t h e sub-Andes, t e c t o n i c s i s compressional. The s t a t e of stress i s d e f i n e d by t h e r e l a t i o n : o x x r o y y x r zz; t h u s d 3 i s v e r t i c a l and u 1 h o r i z o n t a l and, as d i s c u s s e d above, probably s t r i k e s E-W. I n t h e High Andes, o zz i n c r e a s e s w i t h e l e v a t i o n of t h e topography. Two s t a t e s of s t r e s s are p o s s i b l e ; t h e y a r e d e f i n e d by r e l a t i o n s u x x m zz>u yy o r a z z 7 c x x m yy. According t o o u r o b s e r v a t i o n s t h e l a s t s t a t e of s t r e s s p r e v a i l s i n t h e High Andes, i.e., (r 1 i s v e r t i c a l ; whereas u 3 s t r i k i n g N-S and o 2 s t r i k i n g E-W are both h o r i z o n t a l ( F i g u r e 17). Whatever t h e c a s e , u 3 l i e s a l o n g t h e y d i r e c t i o n and t h u s s t r i k e s N-S. I n t h e Andes of s o u t h e r n P e r u , convergence between t h e Nazca and South American p l a t e s (Minster e t a l . , 1974; M i n s t e r and J o r d a n , 1978) i s roughly p a r a l l e l t o u xx, and t h u s e x t e n s i o n i n t h e South Andes i s roughly o r t h o g o n a l t o t h e convergence (Figure 19). I n a g e n e r a l manner, i n high p l a t e a u s which are submitted t o l a t e r a l compression, i f e x t e n s i o n occurs due t o t h e weight of t h e high topography, e x t e n s i o n a l d i r e c t i o n must be r o u g h l y o r t h o g o n a l t o s t r o n g e s t compressional d i r e c t i o n s i n t h e a d j a c e n t lowlands. This a p p e a r s c l e a r l y on t h e T i b e t a n p l a t e a u (Molnar and Tapponnier, 1978; Tapponnier e t a l . , 1981; Armijo e t a l . , 1984; Mercier e t a l . , 1984). However, along a r c u a t e s y s t e m s , compression a l o n g b o u n d a r i e s i s n o t n e c e s s a r y p a r a l l e l t o convergence as it i s t h e case i n t h e Andes. I t i s noteworthy t h a t away from t h e convergence . , Ï7A Sébrier e t al.: zone, a xx t r a j e c t o r i e s may be d e f l e c t e d due t o p o s s i b i l i t i e s of l a t e r a l flowing o f t h e c r u s t a l m a t e r i a l (Tapponnier and Molnar, 1976). P r i n c i p a l d e v i a t o r i c s t r e s s v a l u e s may v a r y along t h e same u xx t r a j e c t o r y so t h a t s u c c e s s i v e u'l, u ' 2 , 0 ' 3 d e v i a t o r i c v a l u e s may be p r e s e n t a l o n g t h i s t r a j e c t o r y , a s demonstrated i n Asia (Tapponnier and N o l n a r , 1976, 19791, i n t h e Aegean a r c (Mercier e t a l . , 1979; M e r c i e r , 19811, and i n t h e Japan a r c (Nakamura and Uyeda, 1980). In t h e Andes t h e s u c c e s s i v e al1 ( i n t h e sub-Andes1 and al2 ( i n t h e High Andes) d e v i a t o r i c v a l u e s e l c n g t h e u xx t r a j e c t o r y r e v e e l t h e i n c r e a s e of u zz due t o t h e h i g h topography i n comparison w i t h o Hmax. Such a model does n o t e x p l a i n t h e s t a t e of s t r e s s i n t h e P a c i f i c Lowlands, where t h e s t a t e of s t r e s s i s n e a r l y n e u t r a l b u t w i t h a p r e f e r e n t i a l tendency t o N-S e x t e n s i o n . Many a u t h o r s (Sacks e t a l . , 1978; Cross and P i l g e r , 1982; Froidevaux and I s a c k s , 1984). have proposed t h a t e x t e n s i o n a l deformation may be due t o f l e x i o n of t h e c o n t i n e n t a l p l a t e along t h e convergence boundary ( F i g u r e 1 9 ) . Above t h e n e u t r a l s u r f a c e of t h e p l a t e , t r a c t i o n should o c c u r and Q xx d e c r e a s e s . I f a xx becomes s m a l l e r t h a n a z z b u t remains h i g h e r t h a n CT yy, t h e n N-S e x t e n s i o n may occur. However, bending might be roughly p a r a l l e l t o t h e N120"E s t r i k i n g c o a s t , and thus e x t e n s i o n above t h e n e u t r a l s u r f a c e should b e o r i e n t a t e d roughly N30"E and n o t along t h e u xx d i r e c t i o n (N80"E). D. Mc Kenzie ( p e r s o n a l communication, 1985) h a s suggested t h a t d e c r e a s i n g of cr xx a l o n g t h e P a c i f i c c o a s t may be due t o a topographic e f f e c t r e l a t e d t o t h e nearby 7000-m-deep t r e n c h . F i n a l l y , on high p l a t e a u s w i t h c r u s t a l t h i c k e n i n g , a s t h e Andes, e x t e n s i o n roughly p a r a l l e l t o t h e convergence must r e s u l t from a s t a t e of s t r e s s c l e a r l y d i f f e r e n t from t h e present-day one. It i s d e f i n e d by t h e r e l a t i o n d xx<a yy<o zz. Such a s t a t e of stress i m p l i e s t h a t f o r c e s a p p l i e d t o a convergence boundary d r a s t i c a l l y decrease. Along s u b d u c t i o n zones, s e v e r a l geodynamic p r o c e s s e s may be p u t forward t o e x p l a i n such a s i t u a t i o n (see Cross and P i l g e r , 19821, f o r i n e t a n c e , seaward m i g r a t i o n of t h e s l a b , slow o r r e t r o g r a d e a b s o l u t e movement of t h e upper p l a t e which a l l o w s seaward m i g r a t i o n of t h e t r e n c h . Whatever t h e s i t u a t i o n , t h e h i g h p l a t e a u i s no l o n g e r l a t e r a l l y s u s t a i n e d and flows toward t h e t r e n c h . This i s t h e Mariana-type a r c of Quaternary Normal and Reverse F a u l t i n g Uyeda and Kanamori (19791, and Uyeda (1981, 1982). E x t e n s i o n a l T e c t o n i c s i n Andean Convergent Benioff Dip -Zone Versus There i s now a g e n e r a l agreement on t h e c o n f i g u r a t i o n of t h e Andean Benioff zone. I t d i p s w i t h an a n g l e of 30" t o t h e east o r n o r t h e a s t beneath t h e A l t i p l a n o (between l a t i t u d e 1 5 " s and 2 8 " s ) and c e n t r a l C h i l e (south of l a t i t u d e 33 S I , where a c t i v e volcanism occurs. On t h e c o n t r a r y , i t is r a t h e r f l a t b e n e a t h c e n t r a l Peru ( n o r t h of l a t i t u d e 15"s) a d n o r t h c e n t r a l C h i l e (between l a t i t u d e 28" S and 33"S), where no a c t i v e volcanism i s known ( S t a u d e r , 1973 ; Barazangi and I s a c k s , 1976). The sub-Andean zone i s wider and s e i s m i c a l l y more a c t i v e above t h e f l a t subduction segments t h a n above t h e s t e e p e r subduction o n e s (Jordan e t a l . , 1983). Mégard and P h i l i p (1976) proposed t h a t t h e r e c e n t and a c t i v e deformations of t h e o v e r r i d i n g p l a t e should be compressional over t h e f l a t Benioff segments and t e n s i o n a l over t h e s t e e p e r ones. However, Q u a t e r n a r y e x t e n s i o n a l s o occurs i n c e n t r a l P e r u b u t seems t o be r e s t r i c t e d t o t h e C o a s t a l Lowlands and Western C o r d i l l e r a (e.g., C o r d i l l e r a Blanca) a r e a s , whereas compression extends i n t h e whole E a s t e r n C o r d i l l e r a and sub-Andes ( S é b r i e r e t a l . , 19821, Thus t e n s i o n a l t e c t o n i c s a f f e c t s a narrower zone i n c e n t r a l Peru than i n s o u t h e r n Peru. T h e r e f o r e t h e r e seems t o e x i s t a c o r r e l a t i o n between t h e s p a t i a l o c c u r r e n c e of t e n s i o n a l / c o m p r e s s i o n a l t e c t o n i c s and t h e geometry of t h e u n d e r l y i n g subduction zone. A s commonly accepted (Barazangi and I s a c k s , 1976; Cross and P i l g e r , 1982) where t h e subduction f l a t t e n s , t h e c o u p l i n g between t h e Nazca and t h e South America p l a t e s i n c r e a s e s . Consequently, u xx h a s a h i g h e r magnitude, and compression p l a y s a more important r o l e i n t h z o v e r r i d i n g c o n t i n e n t a l l i t h o s p h e r e . On t h e c o n t r a r y , where t h e oceanic s l a b d i p s s t e e p e r , ' a n a s t h e n o s p h e r i c wedge a p p e a r s , c a u s i n g volcanism t o occur (Barazangi and I s a c k s , 1976). I n a d d i t i o n , c o u p l i n g between t h e two p l a t e s becomes weaker so t h a t e x t e n s i o n a l domain a f f e c t i n g t h e High Andes i s more e x t e n s i v e . This l a t t e r c a s e i s i l l u s t r a t e d by t h e p r e s e n t - d a y s t a t e of s t r e s s i n s o u t h e r n Peru. It i s noteworthy t h a t d u r i n g Neogene and e a r l y Q u a t e r n a r y , compressional deformations have a f f e c t e d S é b r i e r e t al.: Q u a t e r n a r y Normal and Reverse F a u l t i n g t h e whole c e n t r a l Andes, h i g h l a n d s and lowlands (Dalmayrac and M a t t a u e r , 1980; M a r t i n e z , 1980; S é b r i e r e t a l . , 1980b; Mercier, 1981; Megard e t 'al., 1984). These o b s e r v a t i o n s probably imply a s t r o n g i n c r e a s e of CT xx v a l u e which i n d i c a t e s t h a t geodynamic c o n d i t i o n s were d i f f e r e n t from p r e s e n t ones. CONCLUSIONS F i e l d s t u d i e s i n s o u t h Peru c l e a r l y show ( F i g u r e 1 7 ) t h e f o l l o w i n g : 1. I n t h e sub-Andes, d e f o r m a t i o n s are compressional. They have been observed a f f e c t i n g Neogene and e a r l y Q u a t e r n a r y d e p o s i t s and r e f l e c t a r o u g h l y N-S s t r i k i n g compression. U n f o r t u n a t e l y , the poor q u a l i t y of o u t c r o p s i n t h e Amazonian f o r e s t does n o t p e r m i t s t r u c t u r a l a n a l y s i s of t h e Recent Quaternary d e p o s i t s . However, as l a r g e l y d i s c u s s e d i n t h i s p a p e r , t h i s N-S c o m p r e s s i m i s more l i k e l y t h e e a r l y Quaternary d i r e c t i o r i of compression r a t h e r than t h e p r e s e n t - d a y one. This l a t t e r probably s t r i k e s E-W as shown by f o c a l mechanisms i n t h e sub-Andes of c e n t r a l P e r u , South B o l i v i a , and Nw Argentina. 2. I n t h e High Andes, Recent and a c t i v e deformations r e s u l t from normal f a u l t i n g . S e v e r a l f a u l t s have l e n g t h s r a n g i n g between 5 and 20 km and are s e e n b o t h i n t h e bedrock and i n Q u a t e r n a r y formations. Their k i n e m a t i c s i l l u s t r a t e a N-S s t r i k i n g ex t e n s ion. However , magnitude of s t r e t c h i n g i s small, of t h e o r d e r o f 1%. I 3 . I n t h e P a c i f i c Lowlands, Quaternary normal f a u l t s a l s o r e s u l t from N-S t r e n d i n g e x t e n s i o n whose magnitude appears t o be smaller than i n t h e High Andes. S t r u c t u r a l a n a l y s e s of f a u l t s and some f o c a l mechanisms enable us t o propose a s k e t c h of t h e s t a t e of s t r e s s i n t h e Andes of s o u t h Peru. High Andes and P a c i f i c Lowlands a r e a f f e c t e d by N-S t r e n d i n g e x t e n s i o n . They a r e bounded by two zones o f roughly E-W s t r i k i n g compression: t h e sub-Andes t o t h e NE and t h e c o n t a c t between t h e Nazca and South American p l a t e s t o t h e SW. I n such a s k e t c h ( F i g u r e 1 9 1 , U Hmax t r a j e c t o r i e s s t r i k e E-W and t h u s are r o u g h l y p a r a l l e l t o t h e convergence d i r e c t i o n ; D Hmax i s Q 1 i n t h e sub-Andes, and a t t h e c o n t a c t between t h e two p l a t e s , u Hmax i s u 2 i n t h e High Andes. Thus CT Hmin s t r i k e s N-S; i t i s CT 2 i n t h e subAndes and CI 3 i n t h e High Andes. This , 77s s t a t e of s t r e s s i s i n agreement w i t h an e f f e c t of high topography such t h a t t h e v e r t i c a l p r i n c i p a l stress CT z z , which i s u 3 i n t h e lowlands, becomes u 1 i n t h e High Andes. However, i n t h e P a c i f i c Lowlands t h e s t a t e of s t r e s s a t t h e s u r f a c e i s e x t e n s i o n a l and n o t c o m p r e s s i o n a l , as could be expected. An e f f e c t of warping of t h e c o n t i n e n t a l p l a t e a l o n g t h e convergence boundary o r an e f f e c t of topography due t o t h e nearby deep t r e n c h may be p u t forward. T h e r e f o r e i n h i g h p l a t e a u s such as t h e Andes o r T i b e t , which are submitted t o l a t e r a l compression, i f e x t e n s i o n i s due t o body f o r c e s , i t should s t r i k e o r t h o g o n a l t o compression i n t h e a d j a c e n t lowlands. I n such a model, e x t e n s i o n a l d i r e c t i o n may become p a r a l l e l t o t h e convergence d i r e c t i o n only i f boundary f o r c e s d e c r e a s e drastically. The s t a t e f o r s t r e s s i n t h e Andean c o n t i n e n t a l p l a t e s i t u a t e d above t h e 30" d i p p i n g subduction appears t o be d i f f e r e n t from t h a t of t h e Andes of c e n t r a l Peru s i t u a t e d above t h e f l a t s u b d u c t i n g segment. I n a subsequent paper w e s h a l l r e p o r t a l l t h e Quaternary and a c t i v e f a u l t s observed i n c e n t r a l Peru. These f a u l t s w i t h a v a i l a b l e f o c a l mechanisms w i l l p e r m i t us t o compare t h e d i f f e r e n t s t a t e s of stress i n t h e c o n t i n e n t a l p l a t e segments s i t u a t e d above s l a b s of d i f f e r e n t d i p s . This may improve our u n d e r s t a n d i n g c o n c e r n i n g t h e c o n t r o l of t h e s l a b geometry and consequently of t h e a s t h e n o s p h e r i c wedge on t h e d e f o r m a t i o n a l regime i n t h e upper c o n t i n e n t a l p l a t e . APPENDIX Using t h e approach of B o t t (1959) and P r i c e (19661, s e v e r a l a u t h o r s (e.g., Carey and B r u n i e r , 1974; Carey, 1976, 1979; Armijo and C i s t e r n a s , 1978; Angelier and Goguel, 1979; Etchecopar e t a l . , 1981; Armijo e t a l . , 1982; Angelier e t al., 1982) have proposed q u a n t i t a t i v e computera i d e d methods t o i n t e r p r e t e k i n e m a t i c s of f a u l t s i n a h i g h l y f r a c t u r e d bodies o f rocks. The b a s i c assumptions of a l l t h e s e numerical methods are (1) f o r a p a r t i c u l a r s i t e a given t e c t o n i c event i s c h a r a c t e r i z e d by a s i n g l e homogeneous stress t e n s o r , ( 2 ) f o r a g i v e n phase of d e f o r m a t i o n , i f t h e material has a n i s o t r o p i c and homogeneous b e h a v i o r , o n each f a u l t p l a n e , s l i p ( r e s p o n s i b l e f o r t h e s t r i a t i o n ) o c c u r s i n t h e d i r e c t i o n and 77 6 Sébrier e t al.: Q u a t e r n a r y Normal and Reverse F a u l t i n g of i on t h e f a u l t plane ( i ) ( s e e F i g u r e 20). The-?bo_ve-mentzoned d e f i n i t i o n s imply t h a t ( t i , S i ) = O ; t i i s a f u n c t i o n of t h e f o u r parameters which d e f i n e t h e d e v i a t o r i c s t r e s s t e n s o r : t h e t h r e e Euler a n g l e s which g i v e t h e azimuthal d i r e c t i o n s of t h e p r i n c i p a l s t r e s s axes and t h e r e l a t i v e r a t i o ( R I of p r i n c i p a l s t r e s s e s such as R=!u'2-a'1 F i g . 20. S l i p movement on a f a u l t p l a n e w i t h parameters used i n t h e Appendix ( s e e text). )!!a'3-o'l1 w i t h 0'1 0 ' 2 0'3; d l i s t h e compressional d e v i a t o r i c s t r e s s , O' 2 i s t h e i n t e r m e d i a t e d e v i a t o r i c s t r e s s , 0'3 i s the tensional deviatoric stress. Furthermore, compressional s t r e s s e s a r e noted n e g a t i v e and t e n s i o n a l ones positive. The f o u r parametefs-values must t h u s be i n agreement w i t h (ti,Si)-O, and t h e y a r e t h e r e f o r e determined when t h e f u n c t i o n N s e n s e of t h e r e s o l v e d s h e a r s t r e s s a c t i n g on t h i s f a u l t p l a n e , and ( 3 ) i f t h e r e i s no continuous deformation w i t h i n t h e b l o c k s s e p a r a t e d by f a u l t s , i f t h e r e i s no f a u l t plane r o t a t i o n d u r i n g deformation, and i f t h e s l i p s en t h e s l i c k e n s i d e s are independent and s m a l l r e s p e c t i v e t o t h e f a u l t l e n g t h , deformation o c c u r s as r e l a t i v e displacements of r i g i d b l o c k s along the faults. A s t a t e of s t r e s s i s c h a r a c t e r i z e d by a s t r e s s t e n s o r T which can be d i v i d e d i n t o an i s o t r o p i c p r e s s u r e t e n s o r a1 and i n a d e v i a t o r i c s t r e s s t e n s o r bD, t h i s l a t t e r being r e s p o n s i b l e f o r t h e resolved s h e a r stress which induces of t h e movements blocks. If t h e previous assumptions 1, 2 , and 3 a r e s a t i s f i e d , t h e n t h e d e v i a t o r i c s t r e s s t e n s o r of a t e c t o n i c event can be o b t a i n e d from, s e v e r a l independent s t r i a t i o n s related to t h i s event, t o w i t h i n a m u l t i p l i c a t i v e c o n s t a n t (Carey and B r u n i e r , 1974; Carey, 1976). For each measurred s t g a t e d s l i c k e n s i d e s ( i ) two v e c t o E n i and s i a r e d e f i n e d ( F i g u r e 2 0 ) ; n i i s t h e u n i t v e c t o r normal t o t h e f a u l t _ p l a n e which has a downword component; S i i s t h e u n i t v e c t o r which i s o r i e n t e d p a r a l l e l t o t h e movement of t h e f o o t w a l l block (FI w i t h r e s p e c t to-the hangingwall block (H). The stress+ulL_ applied t o a f a u l t plane ( i > is a i = a n i + t i ; o n i corresponds t o t h e s t r e s s component normal t o t h e f a u l t p l s e ( i ) , t h e r e s o l v e d shear s t r e s s t i i s t h e p r o j e c t i o n - i s minimum, w i t h N= n2mker of f a u l t p l a n e s m e z s s e d , kf=-1 i f ( t i , S i ) a 9 0 ° , k i = l i f ( t i , S i ) < 90". More d e t a i l s on t h e minimization process can be o b t a i n e d from Carey (1976, 1979). T h e o r e t i c a l l y , t h e minimum o f F might b e equal t o -N. N e v e r t h e l e s s , w e c o n s i d e r t h e minimizatAon-to be mathematically good i f a l l t h e ( t i , S i ) a r e i n f e r i o r t o 20" or i f t h i s minimum i s i n f e r i o r t o -90% o f N. Anyway t h e minimum can be s u p e r i o r to -90% of N and t h e res2lt-considered as c o r r e c t i f 80% of t h e ( t i , S i ) are i n f e r i o r t o 2 0 " because t h e s o l u t i o n i s s t a b l e , i . e . , remains t h e same when only t h e 80% of t h e N d a t a a r e used t o c a l c u l a t e t h e d e v i a t o r i c s t r e s s t e n s o r . This l i m i t p e r m i t s us t o t a k e i n t o account t h e e r r o r s o f measurements and i s j u s t i f i e d by thef a c t t h a t t h e v a r i a t i o n of t h e c o s 2 ( t i , S i ) i s low, b e i n g up t o 20'. This simple mechanical model was a p p l i e d t o many f i e l d c a s e s and provided a good i n t e r p r e t a t i o n i n terms of s t r e s s e s f o r t h e s t r i a t i o n s observed on t h e f a u l t p l a n e s , e s p e c i a l l y when t h e r e i s a s i n g l e phase of deformation i n a h i g h l y f r a c t u r e d body of r o c k s . More s o p h i s t i c a t e d c a l c u l a t i o n s must be used t o s e p a r a t e d a t a corresponding t o s e v e r a l t e c t o n i c phases (Carey, 1979; Etchecopar e t al., 1981; Armijo e t a l . , 1 9 8 2 >. c S é b r i e r e t al.: . Quaternary Normal and Reverse F a u l t i n g Acknowledgments. F i e l d 'work h a s been supported by I n s t i t u t o G e o f i s i c o d e l P e r u , ORSTOM L i m a , and ATP Geodynamique I I ( I n s t i t u t National d'Astronomie e t d e Géophysique). We are g r a t e f u l t o t h e S e r v i c i o A e r o f o t o g r a f i c o Nacional d e l Peru which a u t h o r i z e d p u b l i c a t i o n of a e r i a l photographs. The a u t h o r s thank C. Froidevaux, D. H a t z f e l d and t h e two r e v i e w e r s , B. I s a c k s and P. Tapponnier, f o r h e l p f u l comments and B. P u r s e r f o r r e a d i n g t h e E n g l i s h manuscript. . Allmendiger, R. W., V. A. Ramos, T. E. J o r d a n , M. Palma, and B. L. I s a c k s , Paleogeography and Andean s t r u c t u r a l geometry, n o r t h w e s t A r g e n t i n a , Tectonics, 1-16, 1983. A n g e l i e r , J., and J. Goguel, .Sur une méthode simple de d é t e r m i n a t i o n des axes p r i n c i p a u x des c o n t r a i n t e s pour une p o p u l a t i o n de f a i l l e s , C. R. Hebd. Séances Acad. Sc., 307-310, 1979. A n g e l i e r , J., A. T a r a n t o l a , B. Valette, and S. Manoussis, I n v e r s i o n of f i e l d data i n f a u l t tectonics t o obtain the r e g i o n a l s t r e s s , I, S i n g l e phase p o p u l a t i o n : A new method of computing t h e s t r e s s t e n s o r , Geophys. J. R. Astron, Soc., 607-621, 1982. Armijo, R., and A. C i s t e r n a s , Un problème i n v e r s e en m i c r o t e c t o n i q u e c a s s a n t e , R. Hebd. Séances Acad. Sc., 595- 2, c h: 288, 69, 287, C. 598, 1978. Armijo, R., E. Carey, and A. C i s t e r n a s , The i n v e r s e problem i n m i c r b t e c t o n i c s and t h e s e p a r a t i o n of t e c t o n i c p h a s e s , T e c t o n o p h y s i c s , 82, 145-160, 1982. Armijo, R., P. Tapponnier, J. L. M e r c i e r , and Han T., Quaternary e x t e n s i o n of t h e T i b e t a n p l a t e a u : F i e l d o b s e r v a t i o n s and t e c t o n i c . i m p l i c a t i o n s , Paper p r e s e n t e d at t h e I n t e r n a t i o n a l Symposium on Geology of t h e Himalayas, Chengdu, P e o p l e ' s Republic o f China, June 1984. Aubouin, J., A. V. B o r r e l l o , G. C e c i o n i , R. C h a r r i e r , P. Chotin, J. F r u t o s , R. T h i e l e , and J. C. V i c e n t e , E s q u i s s e palgogéographique e t s t r u c t u r a l e d e s Andes- m é r i d i o n a l e s , Rev. Géogr. Phys. Géol. Dyn., g ( 1 - 2 1 , 11-72, 1973. Audebaud, E., Geologia de l o s cuadrangulos d e Ocongate y S i c u a n i , Bol. S e r . Geol. Min., 25, 72 pp., 1973. Audebaud, E. , R. Capdevila, B. Dalmayrac, J. Debelmas, G. Laubacher, C. L e f è v r e , R. Marocco, C . M a r t i n e z , M. Mattauer, 2. I Y Y F. Mégard, J. P a r e d e s , and P. Tomasi, Les t r a i t s géologiques e s s e n t i e l s d e s Andes c e n t r a l e s (Pérou-Bolivie) , Rev. Gbogr. Phys. Géol. D.yn., g ( 1 - 2 ) 73114, 1973. Barazangi, M., and B. I s a c k s , S p a t i a l d i s t r i b u t i o n of earthquakes and of t h e Nazca p l a t e beneath South America, Geology, (11), 686-692, 1976. B a r a z a n g i , M., and B. I s a c k s , Subduction of t h e Nazca p l a t e b e n e a t h Peru: Evidence f r o m ' s p a t i a l d i s t r i b u t i o n of e a r t h q u a k e s , Geophys. J. R. A s tron. SOC 57, 537-555, 1979 Beaudet, G., D. H e r m , R. L a h a r i e , and R. Paskoff ,. S u r l ' e x i s t e n c e du P l i o c è n e marin l e long de l a c ô t e du Pérou, C. R. So". Séances Soc. Géol. F r . , 12113r 2, - REFERENCES m 777 1, 1976. B e v i s , M., and B. I s a c k s , Hypocentral t r e n d s u r f a c e a n a l y s i s : Probing t h e geometry of Benioff zones, J. Geophys. Res 89,(B7), 6153-6170, 1984. --y Blanc, J. L., Etude n é o t e c t o n i q u e e t s i s m o t e c t o n i q u e d e s Andes du Pérou c e n t r a l dans l a r 6 g i o n de Huancayo, t h e s i s , 158 pp., Univ. Paris-Sud, Orsay, 1984. B l a n c , J. L., J. Cabrera, and M. S é b r i e r , E s t u d i o m i c r o t e c t o n i c o de l a f a l l a s i s m i c a d e H u a y t a p a l l a n a (Andes d e l P e r u c e n t r a l ) ,-Rev. G e o f i s i c a I n s t . Panam. Geogr. H i s t . , Mexico, 18/19, 524, 1983. Bles, J. L., J. Goguel, A. Lavenu, P. Masure, Néotectonique e t sismicité du s i t e d e L a Paz ( B o l i v i e ) : Un exemple d e f a i l l e s r é c e n t e s sans t r a c e de s i s m i c I t 6 h i s t o r i q u e ; con séquences p r a t i q u e s pour l e dévelotmement u r b a i n . Bull. -Bur.-Rech. Géol. Min., Sect. 4 , ' - .. 2 , 109-117, 1980. Bonnot, D. , Néotectonique e t t e c t o n i q u e a c t i v e de l a C o r d i l l è r e Blanche e t du C a l l e j o n d e Huaylas (Andes nordp é r u v i e n n e s ) , t h e s i s , 96 pp., Univ. , Paris-Sud , Orsay, 1984. B o t t , M. H. P., The mechanics of o b l i q u e s l i p f a u l t i n g , Geol. Mag., 9 7 , ( 2 ) , 109- 1 1 7 , 1959. C a b r e r a , J., Etudes s u r l a n é o t e c t o n i q u e d e l a r é g i o n de Cuzco: Zone Andine e t zone Sub-Andine, s u d Pérou, r e p o r t Diplom. Etud. Approf., 55 pp., Univ. ' Paris-Sud , O r s ay , 1984. Carey, E., Analyse numérique d'un modèle mécanique é l é m e n t a i r e a p p l i q u é à l ' é t u d e d'une p o p u l a t i o n de f a i l l e s : Calcul d'un t e n s e u r movem ,- d- -e -a ~ ~~~ 778 S é b r i e r e t al.: contraintes p a r t i r des s t r i e s de g l i s s e m e n t , t h e s i s , 138 pp., Univ. Paris-Sud, Orsay, 1976. Carey E . , Recherche des d i r e c t i o n s p r i n c i p a l e s de c o n t r a i n t e s a s s o c i é e s a u j e u d'une p o p u l a t i o n de f a i l l e s , Rev. Géogr. Phys. Géol. Dyn., E , ( l ) , 57-66, 1979. Carey, E., and B. B r u n i e r , Analyse t h é o r i q u e e t numérique d'un modèle mécanique é l é m e n t a i r e appliqué à 1 ' 6 t u d e d'une p. o.p u l a t i o n de f a i l l e s , C. R. Habd, Séances Acad, Stai 279, 891894, 1974. Chinn, D . S., and B. L. I s a c k s , Accurate s o u r c e depths and f o c a l mechanisms of shallow earthquakes i n western South America and i n t h e New Hebrides I s l a n d Arc, T e c t o n i c s , 2 ( 6 ) , 52 9-56 3 , 1983. C 1 a p p e r t o n , C., T h e P l e i s t o c e n e moraine s t a g e s o f w e s t - c e n t r a l Peru, J. G l a c i o l . , 12, 62, 255-263, 1 9 x . Cross, T. A., a n d y . H. P i l g e r , C o n t r o l s of subduction geometry, l o c a t i o n of magmatic a r c s and t e c t o n i c s of a r c and back-arc r e g i o n s , Geol. Soc. Am. Bull., 93, 545-562, 1982. D a l z y r a c , B., Un exemple de t e c t o n i q u e v i v a n t e : Les f a i l l e s s u b a c t u e l l e s du p i e d de la C b r d i l l k r e Blanche (Pérou), Cah. ORSTOM, S6r. G o l . , a ( l ) , 19-27, 1974. Dalmayrac, B., and M. M a t t a u e r , Subduction e t phases de compression dans l a c h a î n e des Andes, C. R. Hebd. Séances Acad. SC., 209, 1345-1348, 1980. Dalmayrac, B. and P. Molnar, P a r a l l e l t h r u s t and normal f a u l t i n g i n Peru and c o n s t r a i n t s on t h e s t a t e of s t r e s s . Earth Planet. Sci. Lett., 473-181, - - 55, -I Y-t-l -l . Etchecopar, A. , G . Vasseur, and M. Daignères, An i n v e r s e problem i n m i c r o t e c t o n i c s f o r the d e t e r m i n a t i o n o f s t r e s s t e n s o r s from f a u l t s t r i a t i o n a n a l y s i s , J. S t r u c t . Geol., 3(1),5165, 1981. F o r n a r i , M., G . H e r a i l , and G. Laubacher, E l oro en l a C o r d i l l e r a S u r o r i e n t a l d e l Peru: E l p l a c e r f l u v i o g l a c i a l d e San Antonio de P o t o (departamento de Puno) y sus r e l a c i o n e s con l a m i n e r a l i z a c i o n p r i m a r i a d e l a Rinconada. i n Proceedings V Congreso Latin American Geology-Argentina, vol. IV, pp. 369386, Buenos A i r e s , 1982. F' r oidevaux, C., and B. L. Isacks, The mechanical s t a t e of t h e Altiplano-Pun a segment of t h e Andes, E a r t h P l a n e t . Sci. L e t t . , 305-314, 1984. - 71, Quaternary Normal and Reverse F a u l t i n g Grange, F., Etude s i s m o t e c t o n i q u e d é t a i l l é e de l a s u b d u c t i o n l i t h o s p h é r i q u e au Sud Pérou, t h e s i s , 90 pp., Univ. Grenoble, Grenoble, France, 1983. Grange, F., P. Cunningham, J. Gagnepain, D. H a t z f e l d , P. Molnar, L. Ocola, A. Rodriguez, S. W. Roecker, J. M. Stock, and G. Suarez, The c o n f i g u r a t i o n of t h e s e i s m i c zone and t h e downgoing s l a b i n s o u t h e r n Peru, Geophys. Res. L e t t . , 1 1 ( 1 ) , 38-41, 1984a. Grange, F e j D. H a t z f e l d , P, Cunninghem, P i Molnar, S. W. Roecker, G. S u a r e z , A. Rodriguez, and L. Ocola, T e c t o n i c i m p l i c a t i o n s of t h e microearthquake s e i s m i c i t y and f a u l t plane s o l u t i o n s i n s o u t h e r n P e r u , J. Geophys. Res., 89(B7), 6139-6152, 1984b. Hasegawa, A., and I. S. Sacks, Subduction of t h e Nazca p l a t e b e n e a t h Peru a s determined from s e i s m i c o b s e r v a t i o n s . J. Geophys. Res., E ( B 6 1 , 4971-4980, 1981. Human, D . , Evolution t e c t o n i q u e cénozoique e t n é o t e c t o n i q u e du Piemont P a c i f i q u e dans l a r é g i o n d'Arequipa (Andes du sud P é r o u ) , t h e s i s , 220 p . , Univ. Paris-Sud, Orsay, 1985. H e i m , A., Observaciones g e o l o g i c a s en l a region d e l terremoto d e Ancash d e Noviembre de 1946, Soc. Geol. Peru V. 2 ( 6 ) , 28 pp., 1949. I s a c k s , B. L., and M. Barazanni. Geometrv - , o f Benioff zones : Lateral segmentation and downward bending of t h e subducted l i t h o s p h e r e , i n I s l a n d Arcs, Deep Sea Trenches , and Back-Arc B a s i n s , Maurice Ewing Ser., vol. 1, e d i t e d by M, Talwani and W. C. Pitman I I I , pp. 991 1 4 , AGU, Washington, D. C., ,1977. Johnson, S. H., and G. E. M s s , S h a l l a u s t r u c t u r e s of t h e Peru margin, Geol. Soc. Am., 525-544, 1981. Jordan, T. E., B.' L. I s a c k s . R. W. A l i e n d i g e r , 3. A. Breve;, V. A. Wmos, and C. J. Ando, Andean t e c t o n i c s r e l a t e d t o geometry of subducted Nazca p l a t e , Geol. Soc. Am. Bull., 9 4 ( 3 ) , 3 41-3 61, 1983. L a h a r i e , R., Cronologia d e l Cuaternario Peruano, i n Proceedings I Congreso L a t i n American Geology, v o l . pp. 145-157, Soc. Geol. P e r u , L i m a . 1970. Laubacher, G., G. Herail, M I F o r n a r i , and M. S é b r i e r , Le P i h o n t Amazonien d e s Andes Sud O r i e n t a l e s du Pérou (Mar capa t a - Inambari 1, paper p r e s e n t e d a t t h e C o l l . Piemonts, A s s . G601. S. O. Toulouse, France, 1982. - - Jub., 154, s. 6, z L S é b r i e r e t al.: Quaternary Normal and Reverse F a u l t i n g Lavenu, A., Néotectonique des sédiments p l i o - q u a t e r n a i r e s du Nord d e 1' 11tiDlano b o l i v i e n ( r é g i o n de La PazAyo A y b - h a l a ) , Cah. ORSTOM Sér. Géol., 10(1>, 115-126, 1978. Lavenu.. A., . Origine e t évolution n é o t e c t o n i q u e du l a c T i t i c q c a , Rev. Hydrobiol. Trop., a ( & ) , 289-297, 1981. Lavenu, A., and O. B a l l i v i a n , E s t u d i o s n e o t e c t o n i c o s de las cuencas de l a s r e g i o n e s de Cochabamba, S u c r e , T a r i j a , Cordillera Oriental, Bolivia, Acad. Nac. Cienc. B o l i v i a , 2 ( 3 ) , 107- e. 1 2 9 , 1980. Lavenu, A., and J. P. S o u l a s , Observacion de m i c r o f a l l a s P l i o - C u b t e r n a r i a s e n d i s t e n s i o n a l o l a r g o de l a c o s t a s u r d e l Peru, Bol. Soc.-Geol. Peru, 39- 2, 48. 1976. Lavenu , A. , M. S é b r i e r , . and M. Servant , Néotectonique des Andes C e n t r a l e s : 3, pp. 56-58, P é r o u , B o l i v i e , G., INQUA Neotectonic Comm. , Stockholm, 1980. Lavenu, A. , M. F o r n a r i , and M. S é b r i e r , E x i s t e n c e de deux nouveaux épisodes l a c u s t r e s q u a t e r n a i r e s dans l ' b l t i p l a n o péruvo-bolivien, Cah. ORSTOM S 6 r -Géol *y 1 4 ( 1 ) , 103-114, 1984. L e f è v r e , C . , Les c a r a c t è r e s magmatiques du volcanisme p l i o - q u a t e r n a i r e d e s Andes dans l e Sud du Pérou, - C o n t r i b . Mineral. Petrol 41, 259-272, 1973. L e g a u l t , R. Z. , P r e l i m i n a r y s t u d y o f marine t e r r a c e s i n t h e Marcona-San Juan a r e a of s o u t h e r n Peru, r e p o r t , Marcona Mining Co , H i e r r o p e r u Marcona, 1963. L e t t a u , H. H., and K. L e t t a u , Exploring t h e w o r l d ' s d r i e s t c l i m a t e , Rep. pp. 1-26, I n s t . f o r Environ. Stud., Univ. Wisc., Madison, 1978. Macharé, J., Geologia d e l C u a t e r n a r i o e n l a c o s t a d e l Peru c e n t r a l , t h e s i s , 197 pp., Univ. Nac. Ing., Lima, 1981. Malgrange, M., A. Deschamps, and R. Madariaga, Thrust and e x t e n s i o n a l f a u t i n g under t h e Chilean coast: 1965, 1971 Aconcagua earthquakes , Geophys. J. R. Astron. Soc., 313-331, 1981. M a r t i n e z , C., S t r u c t u r e e t é v o l u t i o n de l a c h a î n e Hercynienne e t de l a c h a î n e Andine dans l e nord de l a c o r d i l l h r e des Andes d e B o l i v i e , Trav. Doc. ORSTOM, 352 pp., 1980. Mégard, F., and H. P h i l i p , P l i o - Q u a t e r n a r y tectono-magmatic z o n a t i o n and p l a t e t e c t o n i c s i n t h e C e n t-r a -l __ Andes. E rth - -- a~P l a n e t . S c i . L e t t . , 2, 231-238, 1976. Mégard, F., D. C. Noble, E. McKee. and -H. B e l l o n , M u l t i p l e p u l s e s of Neogene . - -O' - 101, 2, 119, ~ e I 77 9 deformation i n t h e Ayacucho i n t e r m o n t a n e b a s i n , Andes of c e n t r a l Peru, Geol. Soc. Am. Bull., E ( 9 ) , 1108-1117, 1984. Mercer , J. H., and O. P a l a c i o s , Radioc a r b o n d a t i n g of t h e l a s t d a c i a t i o n i n Peru, Geology, 5, 600-604, -1977. M e r c i e r , J. L., Extensional-compressional t e c t o n i c s a s s o c i a t e d w i t h t h e Aegean A r c : bmparison w i t h t h e Andean C o r d i l l e r a of s o u t h Peru-north B o l i v i a , P h i l o s . Trans. R. Soc. London, Ser. A, 300, 33 7-355 , 1981. M e r x r , J. L., and M. & b r i e r , Informe sobre e l e s t u d i o p r e l i m i n a r de l a s f a l l a s r e c i e n t e s de la r e g i o n de l a r e p r e s a d e R e c r e t a ( C o r d i l l e r a Blanca , Dep. Ancash), r e p o r t , 8 pp., E l e c t r o p e r u , Lima, 1981. M e r c i e r , J. L., N. D e l i b a s s i s , A. Gaut h i e r , J. J. J a r r i g e , F. L e m e i l l e , H. P h i l i p , M. S é b r i e r , and D. S o r e l , L a n é o t e c t o n i q u e de l ' A r c Eggen, E. Géogr. Phys. G6o1. Dyn., =(I), 67-92, 1979. M e r c i e r , J. L., P. Tapponnier, R. Armijo, E. C a r e y - G a i l h a r d i s , Han T., and Zhou J., F o l d i n g , k i n e m a t i c s of f a u l t s and e v o l u t i o n of t h e s t a t e of stress i n s o u t h e r n T i b e t , paper p r e s e n t e d a t t h e I n t e r n a t i o n a l Symposium on Geology of t h e Himalayas, Chengdu, P e o p l e ' s Republic o f China, June 1984. M i n s t e r , J. B., and T. H. J o r d a n , P r e s e n t day p l a t e motions, J. Geophys. Res., 83, 5331-5334, 1978. M i n z e r , J. B., T. H. J o r d a n , P. Molnar, and E. Haines, Numerical modelling of i n s t a n t a n e o u s p l a t e t e c t o n i c s , Geophys. J. R. Astron. Soc., 36, 541-576, 1974. Molnar , P., and P. Tapponnier , A c t i v e t e c t o n i c s of T i b e t , J. Geophys. Res., 83, 5351-5375, 1978. N a k G u r a , K., and S. Uyeda, Stress g r a d i e n t i n arc-back a r c r e g i o n s and p l a t e s u b d u c t i o n , J. Geophys. Res., SS(Bl1) , 6419-6428, 1980. P r i c e , N. J., F a u l t and J o i n t Development i n B r i t t l e and S e m i - B r i t t l e Rock, Pergamon, New York, 1966. Sacks, I. S., A. T. Linde, A. Rodriguez, and J. A. Snoke, Shalow s e i s m i c i t y i n subduction zones, Geophys. R e s . L e t t . , 5 ( 1 1 ) , 901-903, 1978. S c h w e l l e r , W. J., L. D. Kulm, and R. A. P r i n c e , T e c t o n i c s , s t r u c t u r e and sedimentary framework of t h e Peru-Chile Trench, Mem. Geol. Soc. Am., 323350. 1981. S é b r i e r , M., and C. d e Muizon, Comporte- - I 154, 780 Sébrier e t al.: ment P l i o - P l é i s t o c è n e de l a c ô t e péruvienne au niveau d e l a d e f l e c t i o n d e P i s c o (Andes c e n t r a l e s ) , I X Rdun. Ann. Sc. T e r r e , p. 575, P a r i s , 1 9 8 2 . S é b r i e r , M., and J. Machare, Observaciones a c e r c a d e l C u a t e r n a r i o de l a Costa d e l Peru c e n t r a l , Bull. I n s t . Fr. Etud. 5-22, 1 9 8 0 . Andines, 9-(1-23, S d b r i e r , M., R. Marocco, J. J. Gross, S. Macedo, and M. Montoya, Evolucion neogena d e l Piedemonte P a c i f i c o de l o s Andes d e l S u r d e l P e r u , i n Proceeding II Congreso Geology C h i l e , v o l . p. 71-88, I n s t . I n v e s t . Geol., A r i c a , 1979. S é b r i e r , M., G . Laubacher, R. Marocco, A. Lavenu, and M. S e r v a n t , Evolution t e c t o n i q u e CénozoIque des Andes C e n t r a l e s (Sud Pérou-Bolivie), paper presented a t the 26th International Geological Congress, Soc. Géol. Fr., P a r i s , 198Ca. S é b r i e r , M., A. Lavenu, and M. S e r v a n t , Apuntes r e c i e n t e s s o b r e l a n e o t e c t o n i c a en l o s Andes C e n t r a l e s (Peru-BoIivial, Bull. I n s t . Fr. Etud. Andines, % 1 - 2 ) ; 1 - 3 , 1980b. S é b r i e r , M., D. Huaman, J. L. Blanc, J. Macharé, D. Eonnot, and J. Cabrera, Observaciones a c e r c a de l a Neotectonica d e l Peru, 109 pp., I n s t . G e o f i s i c o P e r u , S e i s m i c i t y Seismic Risk Andin Region, Lima, 1 9 8 2 . S e r v a n t , M., L e cadre s t r a t i g r a p h i q u e du P l i o - Q u a t e r n a i r e d e 1 ' A l t i p l a n o des Andes t r o p i c a l e s de B o l i v i e , Rech. Fr. TNQUA, suppl., Bull. A s s . Fr. Etud. Quat., 1 _ ( 5 0 ) , 323.327, 1 9 7 7 . S i l g- a d o ., E., The Ancash, Peru. earthquake of November 10, 1 9 4 6 ; Bull: Seismol. SOC. h.,41, 8 3 - 1 0 0 , 1 9 5 1 . S i l g a d o , E., H i s t o r i a de l o s sismos mas n o t a b l e s o c u r r i d o s en e l Peru (15131 9 7 4 ) , Bol. 3 , Ser. C , 1 3 0 pp., I n s t . Geol. Min., L i m a , 1 9 7 8 . S o u l a s , J. P., Tectonique q u a t e r n a i r e : La c ô t e p a c i f i q u e e t l a chafne andine du Pérou c e n t r a l , Rev. Géogr. Phys. G6o1. Dyn., 0 ( 5 ) , 3 9 9 - 4 1 4 , 1 9 7 8 . S t a u d e r , W., Mechanism and s p a t i a l d i s t r i b u t i o n of Chilean earthquakes w i t h r e l a t i o n t o subduction of t h e oceanic p l a t e , J. Geophys. Res., 2 ( 2 3 ) , 50335061. 1 9 7 3 . S t a u d e r , W., Subduction of t h e Nazca p l a t e under Peru as evidence by f o c a l mechanisms and by s e i s m i c i t y , J. Geophys. Res., g ( 8 ) , 1053-1064, 1 9 7 5 . 2, - Quaternary Normal and Reverse F a u l t i n g Suarez, G . , P. Molnar, and B. C. Burchfiel, Seismicity, f a u l t plane s o l u t i o n s , depth of f a u l t i n g , and a c t i v e t e c t o n i c s of t h e Andes of P e r u , Ecuador, and s o u t h e r n Colombia, J. Geophys. Res., E ( B 1 2 ) , 10403-1Oz28, 1983 e Tapponnier, P., and P. Molnar, S l i p - l i n e f i e l d theory and l a r g e - s c a l e continental tectonics, Nature, 319-324, 1976. Tapponnier, P., and P. Molnar, A c t i v e f a u l t i n g and Cenozoic t e c t o n i c s of t h e Tien Shan, Mongolia, and B a i k a l r e g i o n s , J. Geolphys. Res., 84, 324 53459, 1979. Tapponnier, P., J. L e M e r c i e r , R. Armijo, Han T., and Zhou J., F i e l d evidence f o r a c t i v e normal faultine: i n T i b e t . 9 -Nature 2 9 4 , 410-414,v1981. Uyeda,. S., . Subduction zones and back a r c b a s i n s : A review, Geol. Rundsch., 7 0 ( 2 ) , 552-569, 1 9 8 1 . U y e z ,. 'S., . Subduction zones: An i n t r o d u c t i o n t o comparative subductology, Tectonophysics, 3, 1 3 3 - 1 5 9 , 1 9 8 2 . Uyeda, S., and H. Kanamori, Back a r c opening and t h e mode of s u b d u c t i o n , J. Geophys. Res. , 84, 1 0 4 9 - 1 0 6 1 , 1 9 7 9 * V i c e n t e , J. C., F. S e q u e i r o s , M. A. V a l d i v i a , and J. Zavala, E l cabalgamiento de Cincha-Pampacolca: Elemento d e l a c i d e n t e mayor andino a l NW d e Arequipa ( S u r d e l P e r u ) , Bol. Soc, Geol. Peru, 61, 6 7 - 9 9 , 1 9 7 9 . , Yonekura, N., T. Matsuda, M. Nogami, a d S. Kaizuka, An a c t i v e f a u l t along t h e western f o o t of t h e C o r d i l l e r a Blanca. Peru, Chigaku ZassRi, %(1), 1-19, 1979. 264, - E. Carey-Gailhardis, J. L. M e r c i e r , and M. S é b r i e r , L a b o r a t o i r e d e Géologie Dynamique I n t e r n e , U.A. 730 CNRS, b a t . 5 0 9 , U n i v e r s i t é Paris-Sud, 91405 Orsay cedex, France. G. Laubacher, ORSTOM, 2 4 r u e Bayard, 75008 P a r i s , France. F. Mégard, Centre Géologique e t Géophysique, U n i v e r s i t é des S c i e n c e s e t Techniques du Languedoc, 34060 M o n t p e l l i e r , France. (Received January 1 7 , 1 9 8 5 ; r e v i s e d June 2 1 , 1 9 8 5 ; accepted June 2 3 , 1985.)
© Copyright 2026 Paperzz