EE595PMP: SecurityandPrivacyofBiomedical Cyber-PhysicalSystems Spring2016 Tamara Bonaci [email protected] TheStoryofHenrieIaLacks Picturecredit:wikipedia.org EE 595, Spring 2016 - Lecture 10 2 WhatisGeneNc/GenomicTest? • GeneNc/genomictestsmayinclude: – AnalysesofhumanDNA,RNA,andchromosomes todetectheritableoracquireddisease-related: • • • • Genotypes MutaNons Phenotypes Karyotypes – Analysesofhumanproteinsandmetabolitesused predominantlytodetectinbornerrorsof: • Metabolism • Heritablegenotypes • MutaNons EE 595, Spring 2016 - Lecture 10 3 WhatCareAboutGeneNc/GenomicTests? • Gene>c/genomicinforma>onmayinform: 1. DeterminaNonofdiseaserisk 2. Appropriatedrugdosingtoavoidadverse events/effects 3. SelecNonof(themost)effecNvemedical treatment EE 595, Spring 2016 - Lecture 10 4 GeneNcExcepNonalism ShouldgeneNc/genomicinformaNon betreateddifferentlyfromother healthinformaNonforpurposesof dataaccessandpermissibleuse? EE 595, Spring 2016 - Lecture 10 5 (Unique)CharacterisNcsofGeneNc/GenomicData • Uniqueness – EachindividualhasuniquegeneNc/genomiccode – Problem1:consolidateddatabasesofgeneNc/ genomicinformaNoncouldpossiblybemindedfor idenNficaNonpurposes – Problem2:(ever)increasingabilitytoaccurately predictanindividual’sphysicalcharacterisNcs fromtheirDNAsequence EE 595, Spring 2016 - Lecture 10 6 (Unique)CharacterisNcsofGeneNc/GenomicData • PredicNveCapabiliNes – SomegeneNc/genomicinformaNoncanbeusedto predictthelikelihoodofdevelopingadiseaseorthe responsetoaspecificdrug – Pro:intheabsenceofothercorroboraNngclinical symptoms,geneNcdatacanbeusedtoinformhealth caremanagementdecisions – Con:AvailableinformaNoncanbeusedto discriminatebasedonpredisposiNon EE 595, Spring 2016 - Lecture 10 7 (Unique)CharacterisNcsofGeneNc/GenomicData • Immutability – Anindividual’sinheritedinformaNondoesnotchange throughoutlife – Problem:publicdisclosureofpersonalgeneNc/ genomicinformaNoncouldcreatelong-lasNngand unpredictableeffects – Knowexamplesofmisuses: • PromoNonofeugenicsiniNaNves • DiscriminaNonininsuranceandatworkplaces, • Unauthorizedaccesstoindividuals’medicalhistories EE 595, Spring 2016 - Lecture 10 8 (Unique)CharacterisNcsofGeneNc/GenomicData • ImpactonFamily – GermlinemutaNons(mutaNonscontained inthespermoreggthatmaybepassedto offspring)mayrevealinformaNonabout medicalriskstoblood-relaNves EE 595, Spring 2016 - Lecture 10 9 (Unique)CharacterisNcsofGeneNc/GenomicData • UbiquityandEaseofProcurement – Anindividual’sgenomicinformaNoncanbeeasily obtainedwithouthis/herknowledgeorpermission from: • Saliva • Blood • Hair • OtherdepositedNssues EE 595, Spring 2016 - Lecture 10 10 GeneNcExcepNonalismRevisited ExcepNonalismwithRespecttoDataAccess – GeneNcinformaNonprobablygenerallydoes notrequiremoreprotecNonthanother sensi,veinforma,on(e.g.,HIVstatus, mentalhealth,ordrugabuse) – Possibleapproach:Datamaskingor controlleddataaccess – Problem:possiblenegaNveimpactofdata maskingonpaNentshealthcare EE 595, Spring 2016 - Lecture 10 11 GeneNcExcepNonalismRevisited ExcepNonalismwithRespecttoDataUse – ProtecNonsagainstthemisuseofgeneNc/genomictest data(e.g.,discriminaNon) – Is data predictive and/or immutable? – Has it been historically misused? – Does access to that information normally requires testing to be carried out? – RegulaNonsregardingtheuseofgeneNcdataforresearch purposes(e.g.,properdisclosureoftheriskofpersonal idenNficaNonandtheneedtoprohibitdataminingand aggregaNngtechniquesdesignedspecificallytocircumvent individualprivacyprotecNon) EE 595, Spring 2016 - Lecture 10 12 ExisNngPrivacyProtecNonMechanisms ExisNngmechanismstoprotectprivacyof geneNc/genomicdatainclude: 1. AnonymiziaNon àShowntobeineffecNveforgeneNc/genomicdata 2. AddingnoisetopublishedgeneNc/genomicdata (differenNalprivacyguarantees) àAlsoineffecNve 3. ComputaNonalparNNoning 4. Cryptography EE 595, Spring 2016 - Lecture 10 13 ExisNngPrivacyProtecNonMechanisms-Cryptography CryptographicMechanisms – Usedtopreserveconfiden,alityandu,lityofdata – Relyoncomputa>onallimita>onsofadversaries àTypicallys>llvulnerabletobrute-forceaJacks Giventhelongevityofgene>c/genomic data,currentlyassumedcomputa>onal limita>onsmaybecomeincorrectorerode over>me EE 595, Spring 2016 - Lecture 10 14 HoneyEncrypNon(HE) • PropertyofHoneyEncrypNon: – Whenciphertextisdecryptedwithan incorrectkey,theresultissNllaplausiblelookingyetincorrectplaintext àHEgivenanaddiNonallayerofprotecNon againstbrute-forceaIacks EE 595, Spring 2016 - Lecture 10 15 HEandDistribuNonTransformingEncoder(DTE) • DistribuNonTransformingEncoder(DTE) – TransformsapotenNallynon-uniformspace ofallowedmessagesMintoauniformlydistributedseedspaceS – Formally,DTEisapairofalgorithms, DTE:=(encode,decode) EE 595, Spring 2016 - Lecture 10 16 HEandDistribuNonTransformingEncoder(DTE) • Formally,DTEisapairofalgorithms,DTE:= (encode,decode) • encodetakesamessagemfromsetMasinputand probabilisNcallyoutputsciphertextsfromS • decodetakesasinputciphertextsfromSandoutputs amessagemfromM • IfthekeyusedfordecrypNoniscorrect,outpuIedm isthecorrectm • Otherwise,outpuIedmisincorrect,butplausible looking EE 595, Spring 2016 - Lecture 10 17 PersonalizedMedicineandPharmacogeneNcs • PharmacogeneNcmodels: – Typicallyconstructedusingsupervisedmachine learningoverlargepaNentdatabases containingclinicalandgenomicdata – Datasetstypicallykeptprivate,butthemodels learnedfromthemaremadepublic EE 595, Spring 2016 - Lecture 10 18 ExperimentalStudy:PersonalizedWarfarinDosage • Warfarin–ananNcoagulantwidelyusedtohelpprevent strokesinpaNentssufferingfromatrialfibrillaNon – Knowntoexhibitacomplexdose-responserelaNonship affectedbymul,plegene,cmarkers – Improperdosingcanleadtoincreasedriskofstrokeor uncontrolledbleeding • Interna,onalWarfarinPharmocogene,csConsor,um(IWPC) collecteddataaboutclinicalhistory,demographicsand genotypefromthousandsofWarfarinusersaroundtheworld • BasedondatafromIWPCdataset,alinearregression mathema>calmodeldevelopedtoaccuratelypredictan WarfarindoseforanindividualpaNent EE 595, Spring 2016 - Lecture 10 19 ExperimentalStudy:PersonalizedWarfarinDosage • Ques>on:towhichdegreedoesthelinearregressionbasedWarfarindosagemodelleaksensi>veinforma>on aboutapa>ent’sgenotype? • Answer:ModelInversionAJack – GivenamodeltrainedtopredictaspecificiniNaldosefora singlepaNent,anaIackerusesittomakeinferencesabout sensiNveaIributesusedasinputtothemodel • ModelinversionaJackstakeadvantageofcorrela>on betweenthetarget,knownaJributes(inourcase, demographicinforma>on)andthemodeloutput(warfarin dosage) EE 595, Spring 2016 - Lecture 10 20 References • ArtCaplan:NIHFinallyMakesGoodwithHenrieAaLacks’Family--andit'saboutTime, EthicistSays,nbcnews.com,August7,2013,online: hIp://www.nbcnews.com/health/nih-finally-makes-good-henrieIa-lacks-family-its-aboutNme-6C10867941 • AmyL.McGuire,RebeccaFisher,PaulCusenza,KathyHudson,MarkA.Rothstein,Deven McGraw,StephenMaIeson,JohnGlaser,andDouglasE.Henley,Confiden,ality,Privacy,and SecurityofGene,candGenomicTestInforma,oninElectronicHealthRecords:Pointsto Consider,Gene,csinMedicine(2008)10,495–499. • ZhicongHuang,ErmanAyday,JacquesFellay,Jean-PierreHubaux,AriJuels,GenoGuard: Protec,ngGenomicDataagainstBrute-ForceAAacks,theProceedingsoftheIEEE SymposiumonSecurityandPrivacy2015. • MaIhewFredrikson,EricLantz,andSomeshJha,SimonLin,DavidPageandThomas Ristenpart,PrivacyinPharmacogene,cs:AnEnd-to-EndCaseStudyofPersonalizedWarfarin Dosing,theProceedingsofthe23rdUSENIXSecuritySymposium,2014. EE 595, Spring 2016 - Lecture 10 21
© Copyright 2026 Paperzz