Algebra II –Wilsen Unit 4: Higher Order Polynomials Day Four BLOCKS 1 and 3 Review Factor and graph the x and y-intercepts of the following: (a) f (x) = x ( 5x – 2 ) ( x 2 + 1) (c) f (x) = ( 3x – 5 ) ( x 2 + 5 ) ( x 2 – 5 ) ( x 3 – 8 ) (b) f (x) = x ( x 2 – 7 ) ( x 3 + 1) Factoring: Sum and Difference of Cubes Example 1 Get the following into intercept form, and give x and y intercepts. (a) y = x 3 + 64 (b) y = w 3 – 27 (c) y = 16b 5 + 686b 2 (d) y = 16z 5 – 250z 2 (e) y = 8x 4 + 8x 3 – 27x – 27 Techniques for Factoring… So Far ALWAYS TAKE OUT ANY GCF FIRST! If 2 terms: If 3 terms: Difference of squares Sum of cubes Difference of cubes Quadratic form ( )( ) If 4 or more even numbers of terms: Grouping Factor each of the following. Again, remember our goal here is to be able to find all real xintercepts. 1) y = 27x 3 – 125 2) y = x 5 + 2x 4 – 9x 3 – 18x 2 3) y = x 6 – 26x 3 – 27 4) f (x) = x 3 – 3x 2 – x + 3 5) f (x) = x 4 – 9x 2 6) f (x) = x 5 + x 4 – 3x 3 – 3x 2 – 4x – 4 Unit 4 Homework 4 (4.4) Factor the following sums and differences of cubes completely. 1. x3 + 8 2. 8a 3 + 1 3. x3 − y3 4. 64 x 3 y 3 − 1 5. a 6 + b3 6. (abc) 3 − 125 7. x 30 − y12 8. b 3 − 27a 3 9. ( x + 1) 3 + 8 10. 8 y 3 − 27 z 9 Factor the following completely. Remember to: • look for any GCF’s first • if two terms, look for differences of squares, or sums or differences of cubes • if three terms, look for quadratic forms that factor into ( • if four or more even terms, try grouping ) ( ) Answers to part I: 1) ( x + 2 )( x 2 – 2x + 4 ) 2) ( 2a + 1)( 4a 2 – 2a + 1) 3) ( x − y )( x 2 + xy + y 2 ) 4) ( 4xy – 1)(16x 2 y 2 + 4xy + 1) 5) (a + b ) ( a 4 – ab + b 2 ) 6) ( abc − 5 )( a 2b 2 c 2 + 5abc + 25 ) 7) (x − y 4 ) ( x 20 + x10 y 4 + y 8 ) 8) (b − 3a )(b 2 + 3ab + 9a 2 ) 9) ((x + 1) + 2 )((x + 1)2 – 2(x + 1) + 4 ) = ( x + 3) ( x 2 + 2x + 1 – 2x – 2 + 4 ) = ( x + 3) ( x 2 + 3) 10) ( 2y − 3z )( 4y 2 10 Answers to part II: 3 2 + 6yz 3 + 9z 6 )
© Copyright 2025 Paperzz