Chapter 1 1.1 Silicon and its metalloid oxides 1.2 Biosilicification 1.3

Chapter 1
1.1 Silicon and its metalloid oxides
1.2 Biosilicification
1.3 Siliceous spicule formation in sponges
1.4 Self-assembly pathways of axial filaments in sponge spicules
1.4.1 In vivo self-assembly of sponge proteins to filaments
1.4.2 In vitro self-assembly of recombinant sponge proteins
1.5 Silicatein-a structure and activity
1.5.1 Silicatein-a secondary structure
1.5.2 Silicatein-a substrates and activity mechanism
1.6 Silicatein-a immobilization strategies
1.7 Silicatein analogues for biomimetic mineralization
1.8 Potential applications of silicatein and biosilica
1.8.1 Biotechnological applications
1.8.2 Biomedical applications
1.9 References
Chapter 2
Formation of micropatterned titania photocatalyst by microcontact printed
silicatein on gold surfaces
2.1 Introduction
2.2 Experimental section
2.2.1 Preparation of recombinant Cys-tagged silicatein-a
2.2.2 Cys-tagged silicatein-a identification by gel electrophoresis and
immunoblotting
2.2.3 Microcontact printing of silicatein-a on gold substrates
2.2.4 Immunodetection of printed silicatein
2.2.5 Synthesis and analysis of Ti02 micropatterns
2.2.6 Photocatalytic activity of the micropatterned Ti02 on gold substrates
http://d-nb.info/105091001X
Contents
2.3 Results and discussion
-32-
2.4 References
-37-
Chapter3
-41-
Bioinspired self-assembly of tyrosinase-modified silicatein and
fluorescent core-shell silica spheres
..
3.1 Introduction
-41-
3.2 Experimental section
-44-44-44-45-
3.2.1 Chemicals
3.2.2 Recombinant silicatein-a expression and folding
3.2.3 Preparation of fluorescent core-shell silica spheres
3.2.4. Preparation of self-assembled silicatein/fluorescent silica core-shell
microfibers
3.3 Results and discussion
-46-
3.4 References
-57-
Chapter4
-61-
Osteogenic potential of a biosilica-coated P(UDMA-co-MPS) copolymer
-61-
4.1 Introduction
-61-
4.2 Experimental section
-64-
4.2.1 Preparation of P(UDMA-co-MPS) copolymer
4.2.2 Nanoindentation measurements and parameters of the copolymer
4.2.3 Surface-functionalization of P(MMA-co-MPS) carriers
4.2.4 Analysis techniques for copolymer and immobilized silicatein
4.2.5 Mineralization of osteoblastic SaOS-2 cells on P(MMA-co-MPS) carriers
-64-64-64-65-65-
cells
4.2.7 Statistical analysis
-67-
4.3 Results and discussion
-67-
4.4 References
Chapter 5
Cellular response on microcrystalline chitosan-polycaprolactone graft
immobilized with enzymatically formed biosilica
5.1 Introduction
5.2 Experimental section
5.2.1 Fabrication of chitosan-polycaprolactone graft
5.2.2 In vitro degradation and swelling index
5.2.3 Surface functionalization of the grafted polymer (Surface aminolysis)
5.2.4 Silicatein immobilization and biosilica formation
5.2.5 Characterization of the immobilized silicatein
5.2.6 Further characterization techniques
5.2.7 SaOS-2 cells incubation conditions
5.2.7.1 Cell viability/growth test
5.2.7.2 Immunocytochemistry with silicatein antibody
5.2.7.3 Mineralization Analysis and Bone Nodule Visualization
5.2.7.4 Alkaline Phosphatase (ALP) Analysis
5.2.7.5 Cells dehydration and morphological studies by SEM
5.2.8 Samples abbreviation
5.2.9 Statistics
5.3 Results and discussion
5.3.1 Structural analyses of CHS-g-PCL polymer
5.3.2 Thermal, hydrolytic and enzymatic degradations of CHS-g-PCL polymer
5.3.3 Immobilization of silicatein and biosilica on CHS-g-PCL polymer surface
5.3.4 Cellular response to the surfaces under investigation
5.3.4.1 Cytotoxicity and proliferation of SaOS-2 cells
5.3.4.2 Immunocytochemistry
5.3.4.3 Quantitative and qualitative mineralization assays
5.3.4.4 Alkaline phosphatase (ALP) activity
5.3.4.5 Dehydrated cells morphology
5.4 References
Extended summary
References
Contents
List of figures
-137-
Publications
-140-
Curriculum Vitae
-141-
Author's declaration
-144-