Class: X Subject: Math’s Topic: Trigonometry No. of Questions: 20 If sin x= (a2 – b2)/(a2 + b2), find tan x. Sol: sin x= (a2 – b2)/(a2 + b2) = P/H H2= P2 + B2 (a2 + b2)= (a2 – b2) + B2 a4 + b4 + 2a2b2= a4 + b4 – 2a2b2 + B2 B= 2ab tan x= P/B= (a2 – b2)/2ab Q.2 If cosec x=2, find the value of 1/tan x + sin x/(1+ cos x) Sol: cosec x= H/P = 2 H2= B2 + P2 4= B2 + 1 4 – 1= B2 B= 3 Q.3 Sol: as kI tan x= P/B= 1/ 3 sin x= P/H= 1/2 cos x= B/H= 3 /2 1/ tan x + sin x/ (1+ cos x)= 2 IT ia ns Q.1 In ∆ABC, right angled at C, if tan A= 1/ 3 , find the value of sin A cos B+ cos A sin B. (CBSE-2008) tan A= 1/ 3 =P/B P2 + B2= H2 1 + ( 3 )2= H2 sin A= 1/2 , cos A= 3 /2 , cos B= 1/2, sin B= 3 /2 sin A cos B + cos A sin B= 1 Q.4 If sin B=1/2, find the value of 3 cos B – 4 cos2 B Sol: sin B=1/2 = P/H H2 = P2 + B2 4= 1 + B2 B= 3 cos B= 3 /2= B/H 3 cos B – 4 cos2B= 0 4 tan x 5 cos x sec x 4 cot x If sin x= 4/5, find the value of Sol: sin x = 4/5 H2= P2 + B2 25= 16 + B2 B=3 cos x=B/H= 3/5, tan x= P/B= 4/3, cot x=B/P=3/4, sec x= H/B=5/3 ia ns Q.5 IT 4 tan x 5 cos x = 1/2 sec x 4 cot x Given 16 cot A=12, find the value of Sol: sin A cos A sin A cos A sin A cos A sin A cos A kI Q.6 = 1 cot A 1 cot A as Dividing the numerator and denominator by sin A, Now, 16 cot A=12 cot A= 12/16= 3/4 sin A cos A =7 sin A cos A Q.7 If tan x= 12/13, evaluate (2sinx cos x)/ (cos2x – sin2x) Sol: tan x= 12/13 (2sinx cos x)/ (cos2x – sin2x) Dividing the numerator and denominator by cos2x = 2tanx/(1 – tan2x)= 24/13 * 169/25= 312/25 Q.8 Find the value of 2(cos2450 + tan2600) – 6(sin2450 – tan2300) Sol: cos 450= 1/ 2 , tan 600= 3 , sin 450= 1/ 2 , tan 300= 1/ 3 2(cos2450 + tan2600) – 6(sin2450 – tan2300)= 2[(1/ 2 )2 + ( 3 )2] – 6[(1/ 2 )2 – (1/ 3 )2] =6 Q.9 Find the value of x in tan3x = sin 450 cos 450 + sin 300 Sol: tan3x = sin 450 cos 450 + sin 300 ns tan3x= 1/ 2 * 1/ 2 + 1/2=1 tan3x= tan 450 3x=450 x=150 Q.10 Find the acute angle x. when (cos x- sin x)/(cos x + sin x)=(1 - Sol: (cos x- sin x)/(cos x + sin x)= (1 - 3 )/(1 + Dividing LHS by cos x (1 – tan x)/ (1 + tan x)= 1 - 3 )/(1 + 3 ) ia IT 3 kI tan x= x= 600 If sin(A + B)=1 and cos(A – B)= : sin(A + B)= 1 sin(A + B)= sin 450 cos(A – B)= 3 /2 cos(A – B)= cos 300 A + B=900 A – B=450 Add both the above equations 2A= 1200 A=600 600 + B= 900 B=300 as Q.11 Sol: 3) 3 )/(1 + 3 ) 3 /2, 00 < A+B≤900, A>B then find A and B. Q.12 If x is an acute angle and sin x= cos x, find the value of 2tan2x + sin2x -1 Sol: 2tan2x + sin2x -1 sin x= cos x (given) sin x/cos x= cos x/ cos x 2tan2x + sin2x -1= 2 + 1/2 – 1= 3/2 Q.13 Given that sin (A+B)= sin A cos b + cos A sin B, find the value of sin 750. Sol: 750 = 450 + 300 sin(300 + 450)= sin 300 cos 450 + cos 300 sin 450 sin 750= 1/2 * 1/ 2 + 3 /2 * 1/ 2 = ( 3 + 1)/ 2 2 If each of α, β and γ is appositive acute angle such that sin(α + β + γ)=1/2 , cos(β + γ – α)= 1/2 and tan(γ + α – β)=1, find the values of α, β and γ. Sol: sin(α + β + γ)=1/2 sin(α + β + γ)=sin 300 α + β + γ= 300 cos(β + γ – α)= 1/2 cos(β + γ – α)= cos600 β + γ – α= 600 tan(γ + α – β)=1 tan(γ + α – β)=tan 450 γ + α – β=450 add the 3 equations 2β= 900 and 2α=750 β=450 and α=37.50 γ= 52.50 Q.15 Evaluate cos(400 – x) – sin(500 + x)+ (cos2400 + cos2500)/(sin2400 + sin2500) Sol: cos(400 – x) – sin(500 + x)+ (cos2400 + cos2500)/(sin2400 + sin2500) cos(400 – x) – sin(90-(400 – x))+ [cos2400 + cos2(900 - 400)]/[sin2400 + sin2(900 - 400)] cos(400 – x) – cos (400 - x)+ (cos2400 + sin2400)/(sin2400 + cos2400) = 0 + 1=1 as kI IT ia ns Q.14 (CBSE-2002) Q.16 Evaluate cot 120 cot 380 cot 520 cot 600 cot 780 Sol: cot 120 cot 380 cot 520 cot 600 cot 780 = (cot 120 cot 780) (cot380 cot 520) (cot600) =(cot 120 tan120) (cot380 tan 380) (cot600) (CBSE-2001) = 1 * 1/ 3 = 1/ 3 Evaluate tan 10 tan 20 tan 30 ……. tan 890. Sol: tan 10 tan 20 tan 30 ……. tan 890 = tan(900 – 890) tan(900 – 880)…… tan 880 tan 890 =cot 890 cot 880 ……. tan880 tan 890. = (cot 890 tan 890) ……. (cot 440 tan 440)tan450 = 1 * 1 * 1 * 1…… * 1= 1 Q.18 If sec 4A= cosec (A – 200), where 4A is an acute angle, find the value of A. (CBSE-2008) Sol: sec 4A= cosec(A-200) = sec[900 – (A – 200)] 4A= 1100 – A 5A= 1100 A=220. Q.19 Evaluate cot2 x- 1/sin2x Sol: cot2x – 1/sin2x= cot2x – cosec2x= -1 Q.20 (1 + tan2x)(1 + sin x)(1 – sin x), find the value. Sol: (1 + tan2x)(1 + sin x)(1 – sin x) =(1 + tan2x)(1 - sin2 x) =sec2 x * cos2 x=1 as kI IT ia ns Q.17
© Copyright 2026 Paperzz