Sound Waves Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Complete terms can be found at http://www.ck12.org/about/ terms-of-use. Printed: August 20, 2015 AUTHOR Jean Brainard, Ph.D. www.ck12.org C HAPTER Chapter 1. Sound Waves 1 Sound Waves • Define sound. • Describe sound waves and how they are generated. • Identify media through which sound waves can travel. Crack! Crash! Thud! That’s what you’d hear if you were in the forest when this old tree cracked and came crashing down to the ground. But what if there was nobody there to hear the tree fall? Would it still make these sounds? This is an old riddle. To answer the riddle correctly, you need to know the scientific definition of sound. Defining Sound In science, sound is defined as the transfer of energy from a vibrating object in waves that travel through matter. Most people commonly use the term sound to mean what they hear when sound waves enter their ears. The tree above generated sound waves when it fell to the ground, so it made sound according to the scientific definition. But the sound wasn’t detected by a person’s ears if there was nobody in the forest. So the answer to the riddle is both yes and no! How Sound Waves Begin All sound waves begin with vibrating matter. Look at the first guitar string on the left in the Figure 1.1. Plucking the string makes it vibrate. The diagram below the figure shows the wave generated by the vibrating string. The moving string repeatedly pushes against the air particles next to it, which causes the air particles to vibrate. The vibrations spread through the air in all directions away from the guitar string as longitudinal waves. In longitudinal waves, particles of the medium vibrate back and forth parallel to the direction that the waves travel. You can see an animation of sound waves traveling through air at this URL: http://www.mediacollege.com/audio/01/sound-waves .html Q: If there were no air particles to carry the vibrations away from the guitar string, how would sound reach the ear? A: It wouldn’t unless the vibrations were carried by another medium. Sound waves are mechanical waves, so they can travel only though matter and not through empty space. 1 www.ck12.org FIGURE 1.1 A Ticking Clock The fact that sound cannot travel through empty space was first demonstrated in the 1600s by a scientist named Robert Boyle. Boyle placed a ticking clock in a sealed glass jar. The clock could be heard ticking through the air and glass of the jar. Then Boyle pumped the air out of the jar. The clock was still ticking, but the ticking sound could no longer be heard. That’s because the sound couldn’t travel away from the clock without air particles to pass the sound energy along. You can see an online demonstration of the same experiment—with a modern twist—at this URL: http://www.youtube.com/watch?v=b0JQt4u6-XI MEDIA Click image to the left or use the URL below. URL: http://www.ck12.org/flx/render/embeddedobject/5041 Sound Waves and Matter Most of the sounds we hear reach our ears through the air, but sounds can also travel through liquids and solids. If you swim underwater—or even submerge your ears in bathwater—any sounds you hear have traveled to your ears through the water. Some solids, including glass and metals, are very good at transmitting sounds. Foam rubber and heavy fabrics, on the other hand, tend to muffle sounds. They absorb rather than pass on the sound energy. Q: How can you tell that sounds travel through solids? A: One way is that you can hear loud outdoor sounds such as sirens through closed windows and doors. You can also hear sounds through the inside walls of a house. For example, if you put your ear against a wall, you may be able to eavesdrop on a conversation in the next room—not that you would, of course. 2 www.ck12.org Chapter 1. Sound Waves Summary • In science, sound is defined as the transfer of energy from a vibrating object in waves that travel through matter. • All sound waves begin with vibrating matter. The vibrations generate longitudinal waves that travel through matter in all directions. • Most sounds we hear travel through air, but sounds can also travel through liquids and solids. Explore More Watch the video “How Sound Waves Travel” at the following URL. Then explain how sound waves begin and how they travel, using the human voice as an example. http://www.youtube.com/watch?v=_vYYqRVi8vY MEDIA Click image to the left or use the URL below. URL: http://www.ck12.org/flx/render/embeddedobject/82391 Review 1. How is sound defined in science? How does this definition differ from the common meaning of the word? 2. Hitting a drum, as shown in the Figure 1.2, generates sound waves. Create a diagram to show how the sound waves begin and how they reach a person’s ears. FIGURE 1.2 3. How do you think earplugs work? References 1. Guitar string photo by Flickr:jar(); illustration by Christopher Auyeung (CK-12 Foundation). Vibrating guitar string . CC BY 2.0 2. S.L. Ratigan. Drums creating sound . CC BY 2.0 3
© Copyright 2026 Paperzz