Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick 617.596.4133 http://lps.lexingtonma.org/Page/2434 Name: Date: FactoringMixedPractice FactoringPatternsthatWeKnow: DifferenceofSquares(DOS) π! β π ! = (π + π)(π β π) SumsandProducts(SAP) π₯ ! + π + π π₯ + ππ = (π₯ + π)(π₯ + π) Non-MonicQuadratics Usesplittingthemiddleterm. Directions: 1. FactoroutanyGCF. 2. Ifpossible,useoneofthepatternstofactortheresultingexpression. Example4:18π₯ ! β 50π₯ 1. π₯ ! β π₯ β 42 2. 4π₯ ! β 25 3. 6π₯ ! + π₯ β 35 4. 5π¦ ! β 125 5. 4π₯ ! + 12π₯ + 9 6. π₯ ! + 4π₯ β 21 1 Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick 617.596.4133 http://lps.lexingtonma.org/Page/2434 Name: Date: 7. 5π₯ ! β 33π₯ + 18 8. 49π₯ ! β 121 9. 12π₯ ! β 7π₯ β 10 10. 9π₯ ! β 16 11. 4π₯ ! + 20π₯ + 25 12. π₯ ! β 5π₯ + 6 13. 5π₯ ! + 15π₯ ! β 20π₯ 14. 4π₯ ! + 18 15. π₯ ! β 12π₯ + 36 16. π₯ ! β 3π₯ + 54 17. 6π₯ ! β 21 18. 3π₯ ! + 31π₯ + 56 19. 16π₯ ! β 1 20. 3π₯ ! β 12π₯ ! β 45π₯ 21. π₯ ! + 8π₯ + 15 2 Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick 617.596.4133 http://lps.lexingtonma.org/Page/2434 22. 75π₯ ! β 27π₯ 23. 3π₯ ! β 12π₯ ! β 36π₯ Name: Date: 24. π₯ ! + 10π₯ ! β 24π₯ Directions:SolveeachproblemusingtheZeroProductPropertyandfactoring. 25. π₯ β 2 π₯ + 3 = 0 26. 2π₯ β 1 π₯ + 2 = 0 27. 2π₯ π₯ β 3 π₯ + 4 = 0 28. π₯ ! β 10π₯ + 25 = 0 29. π₯ ! β 4π₯ = 5 30. π₯ ! β 2 = β2π₯ β 10 31. π₯ ! + 6π₯ = β9 32. π₯ ! β 8π₯ + 16 = 0 33. π₯ ! = 9 3
© Copyright 2026 Paperzz