Almost and Nearly Isosceles Pythagorean Triples

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2016, Article ID 5189057, 6 pages
http://dx.doi.org/10.1155/2016/5189057
Research Article
Almost and Nearly Isosceles Pythagorean Triples
Eunmi Choi
Department of Mathematics, Han Nam University, Daejeon, Republic of Korea
Correspondence should be addressed to Eunmi Choi; [email protected]
Received 16 June 2016; Accepted 9 August 2016
Academic Editor: Aloys Krieg
Copyright © 2016 Eunmi Choi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This work is about extended pythagorean triples, called NPT, APT, and AI-PT. We generate infinitely many NPTs and APTs and
then develop algorithms for infinitely many AI-PTs. Since AI-PT (π‘Ž, 𝑏, 𝑐) is of |π‘Ž βˆ’ 𝑏| = 1, we ask generally for PT (π‘Ž, 𝑏, 𝑐) satisfying
|π‘Ž βˆ’ 𝑏| = π‘˜ for any π‘˜ ∈ N. These triples are solutions of certain diophantine equations.
1. Introduction
A pythagorean triple (PT) is an integer solution (π‘Ž, 𝑏, 𝑐)
satisfying the polynomial π‘₯2 + 𝑦2 = 𝑧2 , and it is said to be
primitive (PPT) if gcd(π‘Ž, 𝑏, 𝑐) = 1. There have been many
ways for finding solutions of π‘₯2 +𝑦2 = 𝑧2 , and one of the wellknown methods is due to Euclid, BC 300. The investigation of
integer solutions of π‘₯2 +𝑦2 = 𝑧2 has been expanded to various
aspects. One direction is to deal with polynomials π‘₯2 + 𝑦2 =
𝑧2 ± 1, where in [1] its integer solutions were called almost
pythagorean triple (APT) or nearly pythagorean triple (NPT)
depending on the sign ±. Another side is to study solutions
of π‘₯2 + 𝑦2 = 𝑧2 having some special conditions. A solution
(π‘Ž, 𝑏, 𝑐) is called isosceles if π‘Ž = 𝑏. Since there is no isosceles
integer solution of π‘₯2 + 𝑦2 = 𝑧2 , isosceles-like integer triples
(π‘Ž, 𝑏, 𝑐) with |π‘Ž βˆ’ 𝑏| = 1 were investigated. We shall call the
(π‘Ž, 𝑏, 𝑐) an almost isosceles pythagorean triple (AI-PT), and
typical examples are (3, 4, 5) and (20, 21, 29). In literatures
[2–4], AI-PT was studied by solving Pell polynomial. And a
few others [5, 6] used triangular square numbers for finding
AI-PT. We note that in some articles AI-PT was called
almost isosceles right angled (AIRA) triangle. But in order to
emphasize relationships with PT, APT, and NPT in this work,
we shall refer to AIRA as AI-PT. APT and NPT were studied
in [1] while AI-PT was studied in [2, 4], and so forth, but it
seems that no one has asked about their connections.
In this work we generate infinitely many APTs and NPTs
and then apply the results in order to develop algorithms
for constructing infinitely many AI-PTs. Moreover we study
PTs (π‘Ž, 𝑏, 𝑐) satisfying |π‘Ž βˆ’ 𝑏| = π‘˜ for any π‘˜ β‰₯ 1. So the
study of these triples can be regarded as a research of solving
diophantine equations π‘₯2 + 𝑦2 = 𝑧2 ± 1 and π‘₯2 βˆ’ 𝑧2 = 2𝑦𝑧.
2. Almost and Nearly Pythagorean Triples
APT and NPT, respectively, are integer solutions of π‘₯2 + 𝑦2 =
𝑧2 + 1 and π‘₯2 + 𝑦2 = 𝑧2 βˆ’ 1, respectively. If (π‘Ž, 𝑏, 𝑐) is an
APT or NPT, so it is (±π‘Ž, ±π‘, ±π‘) hence we generally assume
π‘Ž, 𝑏, 𝑐 > 0. Some triples were listed in [1] by experimental
observations:
NPT: (10, 50, 51), (20, 200, 201), (30, 450, 451), (40,
800, 801), . . .
APT: (5, 5, 7), (4, 7, 8), (8, 9, 12), (7, 11, 13), (11, 13,
17), (10, 15, 18), . . .
Lemma 1 (see [1]). If (π‘Ž, 𝑏, 𝑐) is an APT then (2π‘Žπ‘, 2𝑏𝑐, 2𝑐2 +1)
is a NPT. Conversely if (π‘Ž, 𝑏, 𝑐) is a NPT then (2π‘Ž2 +1, 2π‘Žπ‘, 2π‘Žπ‘)
is an APT.
Theorem 2. If π‘Ž is an even integer then we have the following.
(1) (π‘Ž, 𝑏, 𝑏 + 1) is an APT if 𝑏 = π‘Ž2 /2 βˆ’ 1, while it is a NPT
if 𝑏 = π‘Ž2 /2.
(2) (2π‘Ž2 + 1, π‘Ž3 , π‘Ž(π‘Ž2 + 2)) is an APT and (π‘Ž3 , π‘Ž2 (π‘Ž2 /2 βˆ’
1), π‘Ž4 /2 + 1) is a NPT.
2
International Journal of Mathematics and Mathematical Sciences
Table 1
π‘Ž
APT
π‘Ž2 βˆ’ 2 π‘Ž2
(π‘Ž,
, )
2
2
NPT
π‘Ž2 (π‘Ž2 βˆ’ 2) π‘Ž4 + 2
(π‘Ž ,
,
)
2
2
NPT
π‘Ž2 π‘Ž2 + 2
(π‘Ž, ,
)
2
2
(2π‘Ž + 1, π‘Ž3 , π‘Ž (π‘Ž2 + 2))
2
4
6
(2, 1, 2)
(4, 7, 8)
(6, 17, 18)
(8, 4, 9)
(64, 112, 129)
(216, 612, 649)
(2, 2, 3)
(4, 8, 9)
(6, 18, 19)
(9, 8, 12)
(33, 64, 72)
(73, 216, 228)
3
APT
2
Table 2
π‘Ž
8
12
18
2
2
π‘Ž βˆ’ 24 π‘Ž + 26
,
)
10
10
(8, 4, 9)
(12, 12, 17)
(18, 30, 35)
NPT (π‘Ž,
APT
π‘Ž
(129, 64, 144)
(289, 288, 408)
(649, 1080, 1260)
14
16
24
Proof. If 𝑐 = 𝑏 + 1 then 𝑐2 βˆ’ 𝑏2 = 2𝑏 + 1. If 𝑏 = π‘Ž2 /2 βˆ’ 1
then 𝑐2 βˆ’ 𝑏2 = π‘Ž2 βˆ’ 1, so (π‘Ž, 𝑏, 𝑐) is an APT. If 𝑏 = π‘Ž2 /2 then
𝑐2 βˆ’ 𝑏2 = π‘Ž2 + 1, so (π‘Ž, 𝑏, 𝑐) is a NPT.
Due to Lemma 1, the NPT (π‘Ž, π‘Ž2 /2, π‘Ž2 /2 + 1) yields an
APT (2π‘Ž2 + 1, π‘Ž3 , π‘Ž(π‘Ž2 + 2)), while the APT (π‘Ž, π‘Ž2 /2 βˆ’ 1, π‘Ž2 /2)
provides a NPT (π‘Ž3 , π‘Ž2 (π‘Ž2 /2 βˆ’ 1), π‘Ž4 /2 + 1) (see Table 1).
Theorem 2 gives infinitely many APTs and NPTs (π‘Ž, 𝑏, 𝑐)
such that 𝑐 βˆ’ 𝑏 = 1. Not only this, we can generate APT and
NPT (π‘Ž, 𝑏, 𝑐) with 𝑐 βˆ’ 𝑏 = 5.
Theorem 3. (1) If π‘Ž ≑ ±2 (mod 10) and 𝑏 = (π‘Ž2 βˆ’ 24)/10 then
(π‘Ž, 𝑏, 𝑏 + 5) is a NPT.
(2) If π‘Ž ≑ ±4 (mod 10) and 𝑏 = (π‘Ž2 βˆ’ 26)/10 then (π‘Ž, 𝑏, 𝑏 +
5) is an APT.
Proof. The triple (π‘Ž, 𝑏, 𝑏+5) is a NPT if π‘Ž2 +𝑏2 = (𝑏+5)2 βˆ’1; that
is, 𝑏 = (π‘Ž2 βˆ’ 24)/10. Since 𝑏 > 0 is integer, it must be π‘Ž2 > 24
and π‘Ž2 ≑ 24 (mod 10). So π‘Ž ≑ ±2 (mod 10) with π‘Ž β‰₯ 8. On
the other hand (π‘Ž, 𝑏, 𝑏 + 5) is an APT if π‘Ž2 = 10𝑏 + 26; that
is, 𝑏 = (π‘Ž2 βˆ’ 26)/10. Similar to the above, we have π‘Ž2 > 26
and π‘Ž2 ≑ 26 ≑ 42 (mod 10). Hence π‘Ž ≑ ±4 (mod 10) with
π‘Ž β‰₯ 6.
Theorem 3 together with Lemma 1 yields infinitely many
NPTs and APTs (see Table 2).
Though there are APT and NPT (π‘Ž, 𝑏, 𝑏 + π‘˜) with π‘˜ = 1, 5,
no NPT (π‘Ž, 𝑏, 𝑏+π‘˜) exists if π‘˜ = 2 or 3. In fact if (π‘Ž, 𝑏, 𝑏+2) is a
NPT then π‘Ž2 = 4𝑏 + 3. But since π‘Ž2 ≑ 3 (mod 4) is quadratic
nonresidue, no solution π‘Ž exists. Similarly if π‘˜ = 3 then π‘Ž2 ≑
2 (mod 6), so no integer solution π‘Ž.
Theorem 4. For any π‘˜ > 0, APTs of the form (π‘Ž, 𝑏, 𝑏+π‘˜) always
exist. If π‘˜ βˆ’ 1 is even and square then there exist NPTs of the
form (π‘Ž, 𝑏, 𝑏 + π‘˜).
Proof. A triple (π‘Ž, 𝑏, 𝑏+π‘˜) is an APT if π‘Ž2 +𝑏2 = (𝑏+π‘˜)2 +1; that
is, 𝑏 = (π‘Ž2 βˆ’ π‘˜2 βˆ’ 1)/2π‘˜. Then π‘Ž2 ≑ π‘˜2 + 1 ≑ (π‘˜ ± 1)2 ( mod 2π‘˜).
π‘Ž2 βˆ’ 26 π‘Ž2 + 24
,
)
10
10
(14, 17, 22)
(16, 23, 28)
(24, 55, 60)
APT (π‘Ž,
Hence if we let π‘Ž = 2π‘šπ‘˜ ± (π‘˜ ± 1) and 𝑏 = 2π‘š(π‘šπ‘˜ ± π‘˜ ± 1) + 1
for π‘š ∈ Z, then it can be observed that
(2π‘šπ‘˜ ± (π‘˜ + 1) , 2π‘š (π‘šπ‘˜ ± π‘˜ ± 1) + 1, 2π‘š (π‘šπ‘˜ ± π‘˜ ± 1)
+ 1 + π‘˜)
(1)
is an APT. In particular, (π‘˜ + 1, 1, π‘˜ + 1) is an APT for all π‘˜ > 0.
Let π‘˜ βˆ’ 1 = 𝑒2 = 2V (𝑒, V ∈ N). For (π‘Ž, 𝑏, 𝑏 + π‘˜) to be a NPT,
we must have π‘Ž2 = 2π‘˜π‘ + π‘˜2 βˆ’ 1; that is, 𝑏 = (π‘Ž2 βˆ’ π‘˜2 + 1)/2π‘˜.
Hence π‘Ž2 ≑ π‘˜2 βˆ’ 1 (mod 2π‘˜), so
π‘Ž2 ≑ (2V + 1)2 βˆ’ 1 = 4V2 + 4V = V (4V + 2) + 2V ≑ 2V
= 𝑒2 (mod 2𝑒2 + 2) .
(2)
Write π‘Ž2 = 𝑒2 +2π‘š(𝑒2 +1) for π‘š ∈ Z. Then 𝑏 = βˆ’π‘’2 /2+π‘š and
𝑐 = 𝑏+π‘˜ = 𝑒2 /2+1+π‘š. And since 𝑐2 βˆ’π‘2 βˆ’1 = π‘˜(2𝑏+π‘˜)βˆ’1 =
(𝑒2 + 1)(2π‘š + 1) βˆ’ 1 = π‘Ž2 , (π‘Ž, 𝑏, 𝑐) is a NPT.
For instance, (31, 43, 53), (51, 125, 135) are APTs (π‘Ž, 𝑏, 𝑐)
with 𝑐 βˆ’ 𝑏 = 10. Similarly (34, 47, 58), (56, 137, 148) are APTs
with 𝑐 βˆ’ 𝑏 = 11. So we have infinitely many APTs (π‘Ž, 𝑏, 𝑐) such
that 𝑐 βˆ’ 𝑏 is any integer.
On the other hand, consider π‘˜ = 1, 5, 17, 37 such that π‘˜βˆ’1
is square. Then Theorem 4 yields NPT (π‘Ž, 𝑏, 𝑏 + π‘˜) satisfying
π‘Ž2 = 2π‘˜π‘ + π‘˜2 βˆ’ 1 and 𝑏 = (π‘Ž2 βˆ’ π‘˜2 + 1)/2π‘˜. If π‘˜ = 1 then
π‘Ž ≑ 0 (mod 2) and 𝑏 = βˆ’π‘Ž2 /2 yielding that (π‘Ž, 𝑏, 𝑏 + 1) is a
NPT; say (2, 2, 3), and so forth. If π‘˜ = 5 then π‘Ž ≑ ±2 (mod
10) and 𝑏 = (π‘Ž2 βˆ’ 24)/10 with π‘Ž2 > 24 implying that (π‘Ž, 𝑏, 𝑏 +
5) is a NPT; say (8, 4, 9), and so forth. If π‘˜ = 17 then π‘Ž ≑
±4 (mod 34) and 𝑏 = (π‘Ž2 βˆ’ 288)/34 with π‘Ž2 > 288 implying
that (π‘Ž, 𝑏, 𝑏 + 17) is a NPT; say (30, 18, 35), and so forth.
Corollary 5. Let 𝑛 ≑ 0 (mod 10). If π‘Ž = 𝑛 + 10π‘˜ and 𝑏 =
𝑛2 /2 + 10π‘˜(𝑛 + 5π‘˜) for any π‘˜ β‰₯ 0 then (π‘Ž, 𝑏, 𝑏 + 1) is a NPT.
The proof is clear. Thus (10, 50, 51), (20, 200, 201),
(30, 450, 451), (40, 800, 801), . . . are NPTs, where the list
corresponds to the findings in [1]. We now discuss another
way to construct NPTs from PPT.
International Journal of Mathematics and Mathematical Sciences
3
Table 3
π‘˜
π‘Ž2 = π‘˜2 βˆ’ 1 (mod 2π‘˜)
π‘Ž (mod 2π‘˜)
5
π‘Ž2 ≑ 24 ≑ 4 (mod 10)
±2
17
π‘Ž2 ≑ 288 ≑ 16 (mod 34)
±4
37
π‘Ž2 ≑ 1368 ≑ 36 (mod 74)
±6
π‘Ž>π‘˜
8
12
18
30
38
64
68
80
142
𝑏
4
12
30
18
34
112
44
68
254
(π‘Ž, 𝑏, 𝑏 + π‘˜) NPT
(8, 4, 9)
(12, 12, 17)
(18, 30, 35)
(30, 18, 35)
(38, 34, 51)
(64, 112, 129)
(68, 44, 81)
(80, 68, 105)
(142, 254, 291)
π‘Ž>𝑧
18
34
44
32
68
82
46
70
128
𝑏
6
38
68
8
80
122
22
70
268
(π‘Ž, 𝑏, 𝑏 + 𝑧) NPT
(18, 6, 19)
(34, 38, 51)
(44, 68, 81)
(32, 8, 33)
(68, 80, 105)
(82, 122, 147)
(46, 22, 51)
(70, 70, 99)
(128, 268, 297)
Table 4
2
2
𝑧
π‘Ž = 𝑧 βˆ’ 1 (mod 2𝑧)
π‘Ž (mod 2𝑧)
13
π‘Ž2 ≑ 168 ≑ 64 (mod 26)
±8
25
π‘Ž2 ≑ 624 ≑ 324 (mod 50)
±18
29
π‘Ž2 ≑ 840 ≑ 144 (mod 58)
±12
Theorem 6. For any PPT (π‘₯, 𝑦, 𝑧), there are NPTs (π‘Ž, 𝑏, 𝑐) with
𝑐 βˆ’ 𝑏 = 𝑧.
Proof. The PPT (π‘₯, 𝑦, 𝑧) can be written as π‘₯ = 𝑒2 βˆ’ V2 , 𝑦 =
2𝑒V, and 𝑧 = 𝑒2 + V2 where 𝑒 > V > 0 are bipartite and
gcd(𝑒, V) = 1. Let 𝑒 = 2π‘Ÿ and V = 2𝑠 + 1 (π‘Ÿ, 𝑠 ∈ N). Clearly
𝑧 = 𝑒2 + V2 ≑ 1 (mod 4) and 𝑧 is odd. For (π‘Ž, 𝑏, 𝑏 + 𝑧) to be a
NPT, it satisfies π‘Ž2 = 2𝑏𝑧 + 𝑧2 βˆ’ 1 and 𝑏 = (π‘Ž2 βˆ’ 𝑧2 + 1)/2𝑧.
So π‘Ž2 ≑ 𝑧2 βˆ’ 1 (mod 2𝑧) implies π‘Ž2 ≑ βˆ’1 (mod 𝑧) and π‘Ž2 ≑
𝑧2 βˆ’ 1 ≑ 0 (mod 2).
If 𝑧 is a prime then π‘Ž2 ≑ βˆ’1 ( mod 𝑧) has integer solutions
since 𝑧 ≑ 1 (mod 4). So with 𝑏 = (π‘Ž2 βˆ’ 𝑧2 + 1)/2𝑧, there
exists a NPT of the form (π‘Ž, 𝑏, 𝑏 + 𝑧). On the other hand if
𝑧 = 𝑝1 β‹… β‹… β‹… 𝑝𝑗 (𝑝𝑖 odd primes, 1 ≀ 𝑖 ≀ 𝑗), then 𝑧 ≑ 1 (mod 4)
implies that either every 𝑝𝑖 ≑ 1 (mod4) or there are even
number of 𝑝𝑖 such that 𝑝𝑖 ≑ βˆ’1 (mod 4) for 1 ≀ 𝑖 ≀ 𝑗. Thus
Legendre symbol (βˆ’1/𝑧) equals (βˆ’1/𝑝1 ) β‹… β‹… β‹… (βˆ’1/𝑝𝑗 ) = 1, so
π‘Ž2 ≑ βˆ’1 (mod 𝑧) has integer solutions; hence there is a NPT
(π‘Ž, 𝑏, 𝑏 + 𝑧).
The PPT (π‘₯, 𝑦, 𝑧) with 𝑧 ≀ 40 are (3, 4, 5), (5, 12, 13),
(8, 15, 17), (7, 24, 25), (20, 21, 29), and (12, 35, 37). If 𝑧 =
5, 17, 37 then Table 3 contains the list of NPTs. When 𝑧 =
13, 25, 29, NPTs are as shown in Table 4.
An APT (π‘Ž, 𝑏, 𝑐) satisfying π‘Ž = 𝑏 is called an isosceles APT
(iso-APT). Analogously an iso-NPT is defined. Though there
is no isosceles PT, there are many iso-APTs and iso-NPTs.
Indeed iso-APT and iso-NPT (π‘Ž, π‘Ž, 𝑐) satisfy π‘Ž2 + π‘Ž2 = 𝑐2 ± 1,
so that the pair (π‘Ž, 𝑐) is an integer solution of 2π‘₯2 βˆ’ 𝑦2 = ±1,
which is the Pell polynomial. If (π‘Ž1 , 𝑐1 ), (π‘Ž2 , 𝑐2 ) are integer
solutions of 2π‘₯2 βˆ’ 𝑦2 = βˆ’1 then
1 = (2π‘Ž12 βˆ’ 𝑐12 ) (2π‘Ž22 βˆ’ 𝑐22 )
2
2
(3)
= βˆ’2 (π‘Ž1 𝑐2 + π‘Ž2 𝑐1 ) + (2π‘Ž1 π‘Ž2 + 𝑐1 𝑐2 ) .
Shows that (π‘Ž1 𝑐2 + π‘Ž2 𝑐1 , 2π‘Ž1 π‘Ž2 + 𝑐1 𝑐2 ) satisfies 2π‘₯2 βˆ’ 𝑦2 = βˆ’1.
If (π‘Ž1 , 𝑐1 ), (π‘Ž2 , 𝑐2 ) are roots of 2π‘₯2 βˆ’ 𝑦2 = 1 then (π‘Ž1 𝑐2 +
π‘Ž2 𝑐1 , 2π‘Ž1 π‘Ž2 + 𝑐1 𝑐2 ) holds 2π‘₯2 βˆ’ 𝑦2 = βˆ’1.
Let us define a multiplication (π‘Ž1 , 𝑐1 )(π‘Ž2 , 𝑐2 ) by (π‘Ž1 𝑐2 +
π‘Ž2 𝑐1 , 2π‘Ž1 π‘Ž2 + 𝑐1 𝑐2 ) [7]. For example, a root (2, 3) of 2π‘₯2 βˆ’ 𝑦2 =
βˆ’1 yields (2, 3)2 = (12, 17) satisfying 2π‘₯2 βˆ’ 𝑦2 = βˆ’1. And
a root (5, 7) of 2π‘₯2 βˆ’ 𝑦2 = 1 shows that (5, 7)2 = (70, 99)
holds 2π‘₯2 βˆ’ 𝑦2 = βˆ’1. So the first few nonnegative solutions of
2π‘₯2 βˆ’ 𝑦2 = ±1 are
{(0, 1)βˆ’ , (1, 1)+ , (2, 3)βˆ’ , (5, 7)+ , (12, 17)βˆ’ , (29, 41)+ ,
(70, 99)βˆ’ , (169, 239)+ , . . .} ,
(4)
where the subscripts +, βˆ’ indicate solutions of 2π‘₯2 βˆ’ 𝑦2 = ±1,
respectively.
Theorem 7. Let 𝑠𝑛 = (π‘Žπ‘› , 𝑏𝑛 ) for 𝑠𝑛+1 = 2𝑠𝑛 + π‘ π‘›βˆ’1 with 𝑠0 =
(0, 1), 𝑠1 = (1, 1). Then the following hold.
(1) π‘Žπ‘›+1 = π‘Žπ‘› + 𝑐𝑛 and 𝑐𝑛+1 = π‘Žπ‘›+1 + π‘Žπ‘› and 2π‘Žπ‘› π‘Žπ‘›βˆ’1 βˆ’
𝑐𝑛 π‘π‘›βˆ’1 = (βˆ’1)𝑛 . So 𝑆 = {𝑠𝑛 }𝑛β‰₯0 is a sequence of solutions
of 2π‘₯2 βˆ’ 𝑦2 = (βˆ’1)𝑛+1 .
4
International Journal of Mathematics and Mathematical Sciences
(2) Let 𝐴 = ( 11 21 ). Then 𝑠𝑛 = π‘ π‘›βˆ’1 𝐴 = 𝑠0 𝐴𝑛 by considering
𝑠𝑛 as a matrix.
(3) Let 𝑆+ , π‘†βˆ’ be subsets of 𝑆 consisting of 𝑠𝑛+ , π‘ π‘›βˆ’ , respectively. If 𝑠𝑛 ∈ 𝑆± then 𝑠𝑛+1 ∈ π‘†βˆ“ and 𝑠𝑛+2 ∈ 𝑆± .
Proof. The recurrence 𝑠𝑛+1 = 2𝑠𝑛 + π‘ π‘›βˆ’1 shows (π‘Žπ‘›+1 , 𝑐𝑛+1 ) =
(2π‘Žπ‘› + π‘Žπ‘›βˆ’1 , 2𝑐𝑛 + π‘π‘›βˆ’1 ). So π‘Ž2 = 2π‘Ž1 + π‘Ž0 = 2 = π‘Ž1 + 𝑐1 and
𝑐2 = 2𝑐1 + 𝑐0 = 3 = π‘Ž2 + π‘Ž1 . Hence if we assume π‘Žπ‘› = π‘Žπ‘›βˆ’1 + π‘π‘›βˆ’1
and 𝑐𝑛 = π‘Žπ‘› + π‘Žπ‘›βˆ’1 then π‘Žπ‘›+1 = 2π‘Žπ‘› + π‘Žπ‘›βˆ’1 = π‘Žπ‘› + (π‘Žπ‘› + π‘Žπ‘›βˆ’1 ) =
π‘Žπ‘› + 𝑐𝑛 and 𝑐𝑛+1 = (2π‘Žπ‘› + π‘Žπ‘›βˆ’1 ) + π‘Žπ‘› = π‘Žπ‘›+1 + π‘Žπ‘› .
Clearly 𝑠𝑖 = (π‘Žπ‘– , 𝑐𝑖 ) (1 ≀ 𝑖 ≀ 3) are solutions of 2π‘₯2 βˆ’
2
𝑦 = (βˆ’1)𝑖+1 , and 2π‘Žπ‘– π‘Žπ‘–βˆ’1 βˆ’ 𝑐𝑖 π‘π‘–βˆ’1 = (βˆ’1)𝑖 . If (π‘Žπ‘– , 𝑐𝑖 ) satisfies the
identities for 𝑖 ≀ 𝑛 then
2
2
2
2
βˆ’ 𝑐𝑛+1
= 2 (2π‘Žπ‘› + π‘Žπ‘›βˆ’1 ) βˆ’ (2𝑐𝑛 + π‘π‘›βˆ’1 )
2π‘Žπ‘›+1
2
2
= 4 (2π‘Žπ‘›2 βˆ’ 𝑐𝑛2 ) + (2π‘Žπ‘›βˆ’1
βˆ’ π‘π‘›βˆ’1
)
+ 4 (2π‘Žπ‘› π‘Žπ‘›βˆ’1 βˆ’ 𝑐𝑛 π‘π‘›βˆ’1 ) = (βˆ’1)𝑛+2 ,
(5)
2π‘Žπ‘›+1 π‘Žπ‘› βˆ’ 𝑐𝑛+1 𝑐𝑛 = 2 (2π‘Žπ‘›2 βˆ’ 𝑐𝑛2 ) + (2π‘Žπ‘› π‘Žπ‘›βˆ’1 βˆ’ 𝑐𝑛 π‘π‘›βˆ’1 )
= (βˆ’1)𝑛+1 .
Now 𝑠0 𝐴 = (1, 1) = 𝑠1 and 𝑠1 𝐴 = (2, 3) = 𝑠2 = 𝑠0 𝐴2 .
So if we assume π‘ π‘›βˆ’1 𝐴 = 𝑠𝑛 = 𝑠0 𝐴𝑛 then 𝑠0 𝐴𝑛+1 = 𝑠𝑛 𝐴 =
(π‘Žπ‘› + 𝑐𝑛 , 2π‘Žπ‘› + 𝑐𝑛 ) = (π‘Žπ‘›+1 , 𝑐𝑛+1 ) = 𝑠𝑛+1 .
Moreover for 𝑠𝑛 = (π‘Žπ‘› , 𝑐𝑛 ), 𝑠𝑛+1 = (π‘Žπ‘› +𝑐𝑛 , 2π‘Žπ‘› +𝑐𝑛 ) satisfies
2(π‘Žπ‘› + 𝑐𝑛 )2 βˆ’ (2π‘Žπ‘› + 𝑐𝑛 )2 = βˆ’(2π‘Žπ‘›2 βˆ’ 𝑐𝑛2 ). Similarly from 𝑠𝑛+2 =
𝑠𝑛 𝐴2 = (3π‘Žπ‘› + 2𝑐𝑛 , 4π‘Žπ‘› + 3𝑐𝑛 ), we have 2(3π‘Žπ‘› + 2𝑐𝑛 )2 βˆ’ (4π‘Žπ‘› +
3𝑐𝑛 )2 = 2π‘Žπ‘›2 βˆ’ 𝑐𝑛2 . Thus if 𝑠𝑛 ∈ 𝑆± then 𝑠𝑛+1 ∈ π‘†βˆ“ and 𝑠𝑛+2 ∈ 𝑆± .
This completes the proof.
Corollary 8. Let (π‘Ž1 , π‘Ž1 , 𝑐1 ) (𝑖 = 1, 2) be either iso-NPTs or
iso-APTs. Define a multiplication by (π‘Ž1 , π‘Ž1 , 𝑐1 )(π‘Ž2 , π‘Ž2 , 𝑐2 ) =
(π‘Ž1 𝑐2 + π‘Ž2 𝑐1 , π‘Ž1 𝑐2 + π‘Ž2 𝑐1 , 2π‘Ž1 π‘Ž2 + 𝑐1 𝑐2 ). Then the multiplication
of iso-NPTs (or iso-APTs) yields an iso-NPT. And the multiplication of iso-APT and iso-NPT yields an iso-APT.
The corollary about iso-APT and iso-NPT follows immediately. Hence sets π‘†βˆ’ and 𝑆+ yield iso-NPTs {(2, 2, 3), (12,
12, 17), (70, 70, 99), (408, 408, 577), . . .} and iso-APTs {(1, 1,
1), (5, 5, 7), (29, 29, 41), (169, 169, 239), . . .}.
3. Almost Isosceles Pythagorean Triple
The nonexistence of isosceles integer solution of π‘₯2 + 𝑦2 = 𝑧2
intrigues investigations for finding solutions that look more
and more like isosceles. By an almost isosceles pythagorean
triple (AI-PT), we mean an integer solution (π‘Ž, 𝑏, 𝑐) of π‘₯2 +
𝑦2 = 𝑧2 such that π‘Ž and 𝑏 differ by only 1. The triples
(3, 4, 5), (20, 21, 29), (119, 120, 169), and (696, 697, 985) are
typical examples of AI-PT.
Let (π‘Ž, 𝑏, 𝑐) be an AI-PT with 𝑏 = π‘Ž+1. If 𝑐 = 𝑏+π‘˜ for π‘˜ ∈ N
then π‘Ž2 + (π‘Ž + 1)2 = (π‘Ž + 1 + π‘˜)2 , so π‘Ž2 βˆ’ 2π‘˜π‘Ž βˆ’ (π‘˜2 + 2π‘˜) = 0.
The solution π‘Ž = π‘˜ ± √2π‘˜(π‘˜ + 1) is an integer if 2π‘˜(π‘˜ + 1)
is a perfect square. In fact, if π‘˜ = 1 then 2π‘˜(π‘˜ + 1) = 4, so
π‘Ž = 3, 𝑏 = 4 yields an AI-PT (3, 4, 5). Let 2π‘˜(π‘˜ + 1) = 𝑒2 for
Table 5
𝑛
2
4
6
8
(𝑒𝑛 , V𝑛 )
(2, 3)
(12, 17)
(70, 99)
(408, 577)
π‘˜π‘›
1
8
49
288
π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛
3, 4, 5
20, 21, 29
119, 120, 169
696, 697, 985
𝑒 ∈ N. Then 𝑒2 βˆ’ 2π‘˜2 βˆ’ 2π‘˜ = 0, so 2𝑒2 βˆ’ (2π‘˜ + 1)2 = βˆ’1. If
V = 2π‘˜ + 1 then 2𝑒2 βˆ’ V2 = βˆ’1, so the pairs (𝑒, V) correspond
to the pairs (𝑒𝑛 , V𝑛 ) ∈ π‘†βˆ’ in Theorem 7. Hence the set π‘†βˆ’ =
{(2, 3), (12, 17), (70, 99), . . .} together with π‘˜π‘› = (V𝑛 βˆ’ 1)/2,
π‘Žπ‘› = 𝑒𝑛 + π‘˜π‘› , 𝑏𝑛 = π‘Žπ‘› + 1, and 𝑐𝑛 = 𝑏𝑛 + π‘˜π‘› provides Table 5 of
AI-PT (π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛 ).
Theorem 9. (1) When (𝑒𝑛 , V𝑛 ) ∈ π‘†βˆ’ , let π‘Žπ‘› = 𝑒𝑛 +(1/2)(V𝑛 βˆ’1),
𝑏𝑛 = 𝑒𝑛 + (1/2)(V𝑛 + 1), and 𝑐𝑛 = 𝑒𝑛 + V𝑛 . Then (π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛 ) is an
AI-PT with 𝑐𝑛 βˆ’ 𝑏𝑛 = (1/2)(V𝑛 βˆ’ 1).
(2) If (𝑒𝑛 , V𝑛 ) ∈ 𝑆+ then (π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛 ) is an AI-PT for π‘Žπ‘› =
(1/2)(V𝑛 βˆ’ 1), 𝑏𝑛 = (1/2)(V𝑛 + 1), and 𝑐𝑛 = 𝑒𝑛 .
Proof. If (𝑒𝑛 , V𝑛 ) ∈ π‘†βˆ’ then V𝑛 is odd since V𝑛 = 2Vπ‘›βˆ’1 + Vπ‘›βˆ’2 in
Theorem 7. So if we let π‘˜π‘› = (1/2)(V𝑛 βˆ’ 1) then π‘Žπ‘› = 𝑒𝑛 + π‘˜π‘› ,
𝑏𝑛 = π‘Žπ‘› + 1, and 𝑐𝑛 βˆ’ 𝑏𝑛 = (𝑒𝑛 + V𝑛 ) βˆ’ 𝑒𝑛 βˆ’ (1/2)(V𝑛 + 1) =
(1/2)(V𝑛 βˆ’ 1) = π‘˜π‘› . Thus
2 (π‘Žπ‘›2 + 𝑏𝑛2 ) = 2 (2π‘Žπ‘›2 + 2π‘Žπ‘› + 1)
= 4 (𝑒𝑛 +
V𝑛 βˆ’ 1 2
V βˆ’1
) + 4 (𝑒𝑛 + 𝑛
)+2
2
2
= 4𝑒𝑛2 + 4𝑒𝑛 V𝑛 + V𝑛2 + 1
=
2𝑒𝑛2
+
(2𝑒𝑛2
+ 1) + 4𝑒𝑛 V𝑛 +
(6)
V𝑛2
2
= 2𝑒𝑛2 + V𝑛2 + 4𝑒𝑛 V𝑛 + V𝑛2 = 2 (𝑒𝑛 + V𝑛 )
= 2𝑐𝑛2 ,
since (𝑒𝑛 , V𝑛 ) ∈ π‘†βˆ’ satisfies 2𝑒𝑛2 βˆ’ V𝑛2 = βˆ’1. So (π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛 ) is an
AI-PT.
Similarly Theorem 7 says if (𝑒𝑛 , V𝑛 ) ∈ 𝑆+ then (π‘’π‘›βˆ’1 ,
Vπ‘›βˆ’1 ) ∈ π‘†βˆ’ , where
1 2
)
(π‘’π‘›βˆ’1 , Vπ‘›βˆ’1 ) = (𝑒𝑛 , V𝑛 ) (
1 1
βˆ’1
(7)
= (βˆ’π‘’π‘› + V𝑛 , 2𝑒𝑛 βˆ’ V𝑛 ) .
Hence by letting π‘Žπ‘› = βˆ’π‘’π‘› +V𝑛 +(1/2)(2𝑒𝑛 βˆ’V𝑛 βˆ’1) = (1/2)(V𝑛 βˆ’
1), 𝑏𝑛 = βˆ’π‘’π‘› + V𝑛 + (1/2)(2𝑒𝑛 βˆ’ V𝑛 + 1) = (1/2)(V𝑛 + 1), and
𝑐𝑛 = βˆ’π‘’π‘› + V𝑛 + 2𝑒𝑛 βˆ’ V𝑛 = 𝑒𝑛 , (1) implies that (π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛 ) is an
AI-PT.
Table 5 can be compared to the results in [2, 3]. A
feature here is that we first generate infinitely many isoNPTs (𝑒𝑛 , 𝑒𝑛 , V𝑛 ) and then find AI-PTs (𝑒𝑛 + (V𝑛 βˆ’ 1)/2, 𝑒𝑛 +
(V𝑛 + 1)/2, 𝑒𝑛 + V𝑛 ). For instance, (𝑒𝑛 , V𝑛 ) = (5, 7),
(29, 41), (169, 239) in 𝑆+ produce AI-PTs (3, 4, 5), (20, 21, 29),
International Journal of Mathematics and Mathematical Sciences
(119, 120, 169), respectively, by Theorem 9. Moreover Pell
sequence provides iso-APT, iso-NPT, and AI-PTs.
Theorem 10. Let {𝑃𝑛 } be the Pell sequence with 𝑃0 = 0 and
𝑃1 = 1.
(1) (𝑃𝑛 , 𝑃𝑛 , π‘ƒπ‘›βˆ’1 + 𝑃𝑛 ) is an iso-APT if 𝑛 is odd; otherwise
it is an iso-NPT.
(2) ((1/2)(𝑃𝑛 + 𝑃𝑛+1 βˆ’ 1), (1/2)(𝑃𝑛 + 𝑃𝑛+1 + 1), 𝑃𝑛+1 ) with
even 𝑛 and ((1/2)(π‘ƒπ‘›βˆ’1 +𝑃𝑛 βˆ’1), (1/2)(π‘ƒπ‘›βˆ’1 +𝑃𝑛 +1), 𝑃𝑛 )
with odd 𝑛 are AI-PTs.
Proof. Let 𝐴
2 2𝑃2
( 𝑃1𝑃+𝑃
𝑃1 +𝑃2 ),
2
𝑃
+𝑃
2𝑃
2
1 2𝑃1
= ( 11 21 ) = ( 𝑃0𝑃+𝑃
𝑃0 +𝑃1 ). Then 𝐴
1
𝑛
and it is easy to see 𝐴
𝑃
+𝑃
2𝑃
=
=
π‘›βˆ’1
𝑛
( π‘›βˆ’2π‘ƒπ‘›βˆ’1π‘›βˆ’1 π‘ƒπ‘›βˆ’2 +𝑃
) ( 11 21 ) = ( π‘›βˆ’1𝑃𝑛 𝑛 π‘ƒπ‘›βˆ’1 +𝑃
) by 𝑃𝑛 = 2π‘ƒπ‘›βˆ’1 +
π‘›βˆ’1
𝑛
𝑛
𝑛
π‘ƒπ‘›βˆ’2 . Hence the determinant (βˆ’1) = |𝐴 | = (π‘ƒπ‘›βˆ’1 +𝑃𝑛 )2 βˆ’2𝑃𝑛2
shows (1) due to Theorem 7.
For (2), clearly 𝑠𝑛 = 𝑠0 𝐴𝑛 = (𝑃𝑛 , π‘ƒπ‘›βˆ’1 + 𝑃𝑛 ) and π‘ƒπ‘›βˆ’1 + 𝑃𝑛
is odd. If 𝑛 is even then 𝑠𝑛 ∈ π‘†βˆ’ , so by Theorem 9 we may let
π‘Žπ‘› = 𝑃𝑛 +
(π‘ƒπ‘›βˆ’1 + 𝑃𝑛 βˆ’ 1) (𝑃𝑛+1 + 𝑃𝑛 βˆ’ 1)
=
,
2
2
𝑏𝑛 = 𝑃𝑛 +
(π‘ƒπ‘›βˆ’1 + 𝑃𝑛 + 1) (𝑃𝑛+1 + 𝑃𝑛 + 1)
=
,
2
2
(8)
𝑐𝑛 = 𝑃𝑛 + (π‘ƒπ‘›βˆ’1 + 𝑃𝑛 ) = 𝑃𝑛+1 .
So we have an AI-PT (π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛 ).
5
Now if 𝑛 is odd then 𝑠𝑛 ∈ 𝑆+ . Again by Theorem 9, we
have an AI-PT (π‘Žπ‘› , 𝑏𝑛 , 𝑐𝑛 ) with π‘Žπ‘› = (1/2)(𝑃𝑛 + π‘ƒπ‘›βˆ’1 βˆ’ 1), 𝑏𝑛 =
(1/2)(𝑃𝑛 + π‘ƒπ‘›βˆ’1 + 1), and 𝑐𝑛 = 𝑃𝑛 .
There are infinitely many iso-APTs and iso-NPTs by
means of Pell sequence, where their corresponding pairs are
regarded as solutions of 2π‘₯2 βˆ’ 𝑦2 = ±1. Moreover infinitely
many AI-PTs (π‘Ž, 𝑏, 𝑐) arose from Pell sequence are solutions
of π‘₯2 + 𝑦2 = 𝑧2 with 𝑏 βˆ’ π‘Ž = 1. Indeed, due to Theorem 10, if
𝑛 = 9 then (𝑃9 , 𝑃9 , 𝑃8 +𝑃9 ) = (985, 985, 1393) satisfies π‘₯2 +𝑦2 =
𝑧2 + 1, so it is an iso-APT, while ((1/2)(𝑃8 + 𝑃9 βˆ’ 1), (1/2)(𝑃8 +
𝑃9 + 1), 𝑃9 ) = (696, 697, 985) meets π‘₯2 + 𝑦2 = 𝑧2 , so it is
an AI-PT. On the other hand if 𝑛 = 10 then (𝑃10 , 𝑃10 , 𝑃9 +
𝑃10 ) = (2378, 2378, 3363) is an iso-NPT satisfying π‘₯2 + 𝑦2 =
𝑧2 βˆ’ 1, while ((1/2)(𝑃10 + 𝑃11 βˆ’ 1), (1/2)(𝑃10 + 𝑃11 + 1), 𝑃11 ) =
(4059, 4060, 5741) is an AI-PT satisfying π‘₯2 + 𝑦2 = 𝑧2 .
Besides Pell sequence, Fibonacci sequence is also useful to generate AI-PT. Horadam [8] proved that the four
Fibonacci numbers {𝐹𝑛 , 𝐹𝑛+1 , 𝐹𝑛+2 , 𝐹𝑛+3 } generate a PT 𝑇𝑛 =
2
2
(𝐹𝑛 𝐹𝑛+3 , 2𝐹𝑛+1 𝐹𝑛+2 , 𝐹𝑛+1
+ 𝐹𝑛+2
). So {𝑇𝑛 }𝑛β‰₯1 = {(3, 4, 5), (5, 12,
13), (16, 30, 34), (39, 80, 89), (105, 208, 233), . . .} are all PTs.
As a generalization, we say a sequence {𝑓𝑛 } is Fibonacci type if
𝑓𝑛 +𝑓𝑛+1 = 𝑓𝑛+2 with any initials 𝑓1 and 𝑓2 . Clearly {𝑓𝑛 } = {𝐹𝑛 }
if 𝑓1 = 𝑓2 = 1, and any four Fibonacci type numbers 𝑏 βˆ’ π‘Ž,
π‘Ž, 𝑏, and 𝑏 + π‘Ž (𝑏 > π‘Ž > 0) yield a PT (𝑏2 βˆ’ π‘Ž2 , 2π‘Žπ‘, 𝑏2 + π‘Ž2 ),
Euclid’s formula. Let us consider Fibonacci type numbers and
their corresponding PTs:
{𝑓𝑛 } : {𝑏 βˆ’ π‘Ž, π‘Ž, 𝑏, 𝑏 + π‘Ž}
{𝑏 + π‘Ž, 𝑏, 2𝑏 + π‘Ž, 3𝑏 + π‘Ž}
𝑇𝑛 : (𝑏2 βˆ’ π‘Ž2 , 2π‘Žπ‘, 𝑏2 + π‘Ž2 ) (3𝑏2 + 4π‘Žπ‘ + π‘Ž2 , 4𝑏2 + 2π‘Žπ‘, 5𝑏2 + 4π‘Žπ‘ + π‘Ž2 ) .
(9)
In particular if π‘Ž = 1 and 𝑏 = 2, we have
{𝑓𝑛 } : {1, 1, 2, 3} {3, 2, 5, 7} {7, 5, 12, 17} {17, 12, 29, 41} β‹… β‹… β‹…
𝑇𝑛 : (3, 4, 5) (21, 20, 29) (119, 120, 169) (697, 696, 985) β‹… β‹… β‹… .
And we notice that middle two terms of {𝑓𝑛 } are consecutive
Pell numbers and the corresponding PT 𝑇𝑛 are all AI-PT.
Theorem 11. Let π‘Ž = 𝑃𝑛 , 𝑏 = 𝑃𝑛+1 be Pell numbers. Then the
PT generated by four Fibonacci type numbers 𝑏 βˆ’ π‘Ž, π‘Ž, 𝑏, and
𝑏 + π‘Ž is an AI-PT.
Proof. Consider four Fibonacci type numbers {π‘βˆ’π‘Ž, π‘Ž, 𝑏, 𝑏+π‘Ž}
and its generated triple 𝑇𝑛 . We have seen that 𝑇𝑛 are all AI-PT
if 1 ≀ 𝑛 ≀ 4. Now let 𝑇𝑛 = (π‘₯𝑛 , 𝑦𝑛 , 𝑧𝑛 ) be the PT generated
by {𝑃𝑛+1 βˆ’ 𝑃𝑛 , 𝑃𝑛 , 𝑃𝑛+1 , 𝑃𝑛+1 + 𝑃𝑛 } for any 𝑛 > 0. Since π‘₯𝑛 =
2
2
𝑃𝑛+1
βˆ’ 𝑃𝑛2 , 𝑦𝑛 = 2𝑃𝑛 𝑃𝑛+1 , and 𝑧𝑛 = 𝑃𝑛2 + 𝑃𝑛+1
, it is not hard to
see that
2
2
π‘₯𝑛 βˆ’ 𝑦𝑛 = (𝑃𝑛+1 βˆ’ 𝑃𝑛 ) βˆ’ 2𝑃𝑛2 = (𝑃𝑛 + π‘ƒπ‘›βˆ’1 ) βˆ’ 2𝑃𝑛2
= (βˆ’1)𝑛
(11)
(10)
due to the determinant of 𝐴𝑛 in Theorem 10. Thus 𝑇𝑛 is an
AI-PT.
Like for triples (π‘₯, 𝑦, 𝑧) satisfying |𝑦 βˆ’ π‘₯| = 1, it is worth
asking for triples (π‘₯, 𝑦, 𝑧) satisfying |𝑦 βˆ’ π‘₯| = π‘˜ for π‘˜ ∈ N. For
instance, the Fibonacci type numbers {1, 1, 2, 3}, {1, 2, 3, 5},
and {1, 3, 4, 7} produce PTs (π‘₯, 𝑦, 𝑧) = (3, 4, 5), (5, 12, 13),
(7, 24, 25), respectively, where 𝑦 βˆ’ π‘₯ = 1, 7, 17.
Theorem 12. For any positive integer π‘˜, there are infinitely
many PTs (π‘₯, 𝑦, 𝑧) satisfying |𝑦 βˆ’ π‘₯| = 2π‘˜2 βˆ’ 1.
Proof. We assume π‘Ž1 = 1 and 𝑏1 = π‘˜. Fibonacci type numbers
{π‘Ž1 , 𝑏1 , π‘Ž1 + 𝑏1 , π‘Ž1 + 2𝑏1 } make a PT 𝑇1(π‘˜) = (2π‘˜ + 1, 2π‘˜(π‘˜ +
1), 2π‘˜(π‘˜+1)+1), where the difference 𝛿1(π‘˜) = |𝑦1 βˆ’π‘₯1 | = 2π‘˜2 βˆ’1.
6
International Journal of Mathematics and Mathematical Sciences
Table 6
𝑛
𝑓𝑛 ’s
𝑇𝑛(1) with 𝛿𝑛(1) = 1
𝑓𝑛 ’s
𝑇𝑛(2) with 𝛿𝑛(2) = 7
𝑓𝑛 ’s
𝑇𝑛(3) with 𝛿𝑛(3) = 17
𝑓𝑛 ’s
𝑇𝑛(4) with 𝛿𝑛(4) = 31
1 1, 1, 2, 3
(3, 4, 5)
1, 2, 3, 5
(5, 12, 13)
1, 3, 4, 7
(7, 24, 25)
1, 4, 5, 9
(9, 40, 41)
2 3, 2, 5, 7
(21, 20, 29)
5, 3, 8, 11
(55, 48, 73)
7, 4, 11, 15
(105, 88, 137)
9, 5, 14, 19
(171, 140, 221)
3 7, 5, 12, 17
(119, 120, 169)
11, 8, 19, 27
(297, 304, 425)
15, 11, 26, 37
(555, 572, 797)
19, 14, 33, 47
(893, 924, 1285)
Secondly if π‘Ž2 = π‘Ž1 + 2𝑏1 , 𝑏2 = π‘Ž1 + 𝑏1 then Fibonacci type
numbers {π‘Ž2 , 𝑏2 , π‘Ž2 +𝑏2 , π‘Ž2 +2𝑏2 } yield a PT 𝑇2(π‘˜) = (8π‘˜2 +10π‘˜+
3, 6π‘˜2 + 10π‘˜ + 4, 10π‘˜2 + 14π‘˜ + 5), with 𝛿2(π‘˜) = |𝑦2 βˆ’ π‘₯2 | = 2π‘˜2 βˆ’ 1.
Now for any 𝑛 > 1, let π‘Žπ‘› = π‘Žπ‘›βˆ’1 +2π‘π‘›βˆ’1 and 𝑏𝑛 = π‘Žπ‘›βˆ’1 +π‘π‘›βˆ’1 .
Assume that the PT 𝑇𝑛(π‘˜) = (π‘₯𝑛 , 𝑦𝑛 , 𝑧𝑛 ) = (π‘Žπ‘› (π‘Žπ‘› +2𝑏𝑛 ), 2𝑏𝑛 (π‘Žπ‘› +
𝑏𝑛 ), 𝑏𝑛2 + (π‘Žπ‘› + 𝑏𝑛 )2 ) generated by Fibonacci type numbers
{π‘Žπ‘› , 𝑏𝑛 , π‘Žπ‘› + 𝑏𝑛 , π‘Žπ‘› + 2𝑏𝑛 } satisfies 𝛿𝑛(π‘˜) = |2π‘˜2 βˆ’ 1|. Then the
(π‘˜)
generated by {π‘Žπ‘›+1 , 𝑏𝑛+1 , π‘Žπ‘›+1 + 𝑏𝑛+1 , π‘Žπ‘›+1 + 2𝑏𝑛+1 }
next PT 𝑇𝑛+1
forms
(π‘˜)
2
𝑇𝑛+1
= (π‘Žπ‘›+1 (π‘Žπ‘›+1 + 2𝑏𝑛+1 ) , 2𝑏𝑛+1 (π‘Žπ‘›+1 + 𝑏𝑛+1 ) , 𝑏𝑛+1
2
+ (π‘Žπ‘›+1 + 𝑏𝑛+1 ) ) .
(12)
And we also have
󡄨
󡄨
(π‘˜)
𝛿𝑛+1
= 󡄨󡄨󡄨𝑦𝑛+1 βˆ’ π‘₯𝑛+1 󡄨󡄨󡄨
󡄨
󡄨
= 󡄨󡄨󡄨2 (π‘Žπ‘› + 𝑏𝑛 ) (2π‘Žπ‘› + 3𝑏𝑛 ) βˆ’ (π‘Žπ‘› + 2𝑏𝑛 ) (3π‘Žπ‘› + 4𝑏𝑛 )󡄨󡄨󡄨
(13)
󡄨
󡄨 󡄨
󡄨
= σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘Žπ‘›2 βˆ’ 2𝑏𝑛2 󡄨󡄨󡄨󡄨 = 󡄨󡄨󡄨2𝑏𝑛 (π‘Žπ‘› + 𝑏𝑛 ) βˆ’ π‘Žπ‘› (π‘Žπ‘› + 2𝑏𝑛 )󡄨󡄨󡄨
󡄨 󡄨 󡄨
󡄨
= 󡄨󡄨󡄨󡄨𝛿𝑛(π‘˜) 󡄨󡄨󡄨󡄨 = 󡄨󡄨󡄨󡄨2π‘˜2 βˆ’ 1󡄨󡄨󡄨󡄨 .
So we have infinitely many PTs (π‘₯𝑛 , 𝑦𝑛 , 𝑧𝑛 ) such that |𝑦𝑛 βˆ’
π‘₯𝑛 | = 2π‘˜2 βˆ’ 1.
If π‘Ž1 = 1, π‘Ž2 = π‘˜ (1 ≀ π‘˜ ≀ 4) then 𝑇1(π‘˜) with 𝛿1(π‘˜) = |2π‘˜2 βˆ’
1| are {(3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41)}. 𝑇𝑛(π‘˜) (1 ≀
𝑛, π‘˜ ≀ 4) with 𝛿𝑛(π‘˜) = |2π‘˜2 βˆ’ 1| are as shown in Table 6.
Competing Interests
The author declares that there is no conflict of interests
regarding the publication of this paper.
Acknowledgments
This work was supported by 2016 HanNam University
Research Fund.
References
[1] O. Frink, β€œAlmost pythagorean triples,” Mathematics Magazine,
vol. 60, no. 4, pp. 234–236, 1987.
[2] C. C. Chen and T. A. Peng, β€œClassroom note. Almost isoceles
right angled triangle,” Australasian Journal of Combinatorics,
vol. 11, pp. 263–267, 1995.
[3] R. H. Dye and R. W. Nickalls, β€œ82.9 A new algorithm for
generating pythagorean triples,” The Mathematical Gazette, vol.
82, no. 493, pp. 86–91, 1998.
[4] T. W. Forget and T. A. Larkin, β€œPythagorean triads of the form
π‘₯, π‘₯ + 1, 𝑧 described by recurrence sequences,” The Fibonacci
Quarterly, vol. 6, no. 3, pp. 94–104, 1968.
[5] G. Hatch, β€œPythagorean triples and triangular square numbers,”
The Mathematical Gazette, vol. 79, no. 484, pp. 51–55, 1995.
[6] M. A. Nyblom, β€œA note on the set of almost-isosceles rightangled triangles,” The Fibonacci Quarterly, vol. 36, no. 4, pp. 319–
322, 1998.
[7] D. Burton, Elementary Number Theory, McGraw Hill Education, 2010.
[8] A. F. Horadam, β€œFibonacci number triples,” The American
Mathematical Monthly, vol. 68, pp. 751–753, 1961.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014