Ch 5 Exam Review The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve. Evaluate the expression using the values given in the table. 1) (f g)(3) 8) f(x) = x+3 x 1 5 11 12 f(x) -1 11 3 14 x -5 -1 1 3 g(x) 1 -7 5 11 For the given functions f and g, find the requested composite function value. Find (f g)(2). 2) f(x) = x + 3, g(x) = 3x; 3) f(x) = 2x + 4, g(x) = 4x2 + 3; 1). Find (g Find the domain of the composite function f x 2 ; g(x) = 4) f(x) = x+1 x+3 5) f(x) = x - 3; g(x) = g)( Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given. 9) g. 3 x-9 Indicate whether the function is one-to-one. 6) {(-1, -9), (0, -9), (1, 9), (2, -3)} Use the horizontal line test to determine whether the function is one-to-one. 7) Decide whether or not the functions are inverses of each other. 1 10) f(x) = 3x + 9, g(x) = x - 3 3 The function f is one-to-one. Find its inverse. 11) f(x) = 2x - 4 12) f(x) = 1 9x - 8 3x - 8 Graph the function. 3 x 16) f(x) = 5 Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of the inverse. 5 13) f(x) = x-2 The graph of an exponential function is given. Match the graph to one of the following functions. 14) Solve the equation. 17) 3 1 + 2x = 27 x 18) (ex) · e24 = e11x A) f(x) = 3 x C) f(x) = 3 x + 2 B) f(x) = 3 x - 2 D) f(x) = 3 x + 2 1 x+3 19) ex - 5 = e4 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. 15) f(x) = 5 -x + 3 Graph the function. 20) f(x) = -1 + ex Change the exponential expression to an equivalent expression involving a logarithm. 1 21) 3 -3 = 27 22) ex = 10 2 Change the logarithmic expression to an equivalent expression involving an exponent. 23) log 2 x = 3 Use the properties of logarithms to find the exact value of the expression. Do not use a calculator. 34) ln e2 2 24) log 1/4 16 = -2 25) ln 35) log4 24 - log4 6 36) 10log 12 - log 2 1 = -4 e4 Suppose that ln 2 = a and ln 5 = b. Use properties of logarithms to write each logarithm in terms of a and b. 5 37) ln 2 Find the exact value of the logarithmic expression. 26) log1/4 256 27) log 10 10,000 38) ln 28) ln e7 20 Write as the sum and/or difference of logarithms. Express powers as factors. 14 x 39) log 5 y Find the domain of the function. 29) f(x) = ln(-3 - x) 30) f(x) = log10 7 x+5 x-7 40) log 4 The graph of a logarithmic function is shown. Select the function which matches the graph. 31) x+6 x3 3 41) log 5 r 4 u2 s Express as a single logarithm. 3 1 42) 6 log a m - log a n + log a j - 5 log a k 5 4 43) 6 log b q - log b r 44) ln A) y = -log x C) y = log(-x) 4), x > 0 B) y = -log(-x) D) y = log x Use the Change-of-Base Formula and a calculator to evaluate the logarithm. Round your answer to three decimal places. 45) log 0.771 6 Solve the equation. 32) log5 (x2 - 4x) = 1 33) ln x2 + 5x - 14 x2 + 6x - 7 - ln + ln (x2 - 4x + x-1 x+1 x+2=2 Solve the equation. 46) log 6 (x + 3) = 3 3 47) log 5 (2x + 4) = log 5 (2x + 7) 48) log (3x) = log 4 + log (x - 3) 49) 2 + log3 (2x + 5) - log3 x = 4 50) log 5 (x + 1) = 1 + log 5 (x - 1) 1 51) 2 (5 - 3x) = 16 Solve the equation. Express irrational answers in exact form and as a decimal rounded to 3 decimal places. 3 x = 41 - x 52) 2 4 Answer Key Testname: CH 5 EXAM REVIEW 1) 2) 3) 4) 5) 6) 7) 8) 3 3 199 {x x -3, x -5} {x 9 < x 10} No No 9) 10) Yes x+4 11) f-1 (x) = 2 8x - 8 12) f-1 (x) = 3x - 9 13) f(x): D = {x|x 2}, R = {y 0}; f-1 (x): D = {x|x 0}, R = {y|y 2} 14) D 5 Answer Key Testname: CH 5 EXAM REVIEW 15) domain of f: (- , ); range of f:(3, ) horizontal asymptote: y = 3 16) 17) {1} 18) {3, 8} 7 19) 5 20) 1 = -3 21) log 3 27 22) ln 10 = x 23) 2 3 = x 6 Answer Key Testname: CH 5 EXAM REVIEW 24) 1 -2 = 16 4 1 25) e-4 = e4 26) 27) 28) 29) 30) 31) 32) -4 4 7 ( , -3) (- , -5) (7, ) B {5, -1} 33) {e4 - 2} 34) 2 2 35) 1 36) 6 37) b - a 1 38) (2a + b) 7 1 39) log 5 14 + log 5 x - log 5 y 2 40) log 4 (x + 6) - 3 log 4 x 1 1 41) log 5 r + log 5 s - 2 log 5 u 3 4 m 6 j1/4 42) log a n 3/5 k5 q6 43) log b r 44) ln (x - 2)3 (x + 1) (x - 1)2 45) -0.145 46) {213} 47) 48) 12 5 49) 7 50) 3 2 51) {3} 52) ln 4 3 ln + ln 4 2 0.774 7
© Copyright 2025 Paperzz