MAT 137 Tutorial #18– Convergence Tests March 20-21, 2017 Determine which ones of the following series are absolutely convergent, conditionally convergent, or divergent. 1 X e1 1/n 1. 3 + sin n n=1 1 X 1 2. n n=1 3. 1 X n=1 4. 5. 6. 12. ( 1)n n 1 X ( 1)n n2 + 6 n=1 n=1 n2 p n5 + 4n + 11 1 X 1 7. ( 1)n sin n n=1 1 X 1 8. ( 1) n sin n n=1 9. 10. n 1 X (n + 3)2n n=1 n! 1 X n!(2n)! n=1 1 X n=1 1 X 1 n2 n=1 1 X 1 X 1 11. nn n=1 (3n)! 13. 2 · 4 · 6 · . . . · (2n) ⇡ n+1 · 2n 1 1 · 3 · 5 · . . . · (2n 1) e 1 X sin n n=1 n2 1 X n! 14. 104n n=1 15. 16. 1 2 + 2 2 3 1 X cos(n⇡) n=2 17. 1 X n=2 18. 19. ln n 1 n (ln n)2 1 X 1 ln n n=2 1 X ln n n=2 20. 4 8 16 + 4+ 5 3 4 5 6 1 X n=2 n1.1 1 (ln n)3 32 + ... 76
© Copyright 2026 Paperzz