A new genus and species for the largest specimen of Archąeopteryx ANDRZEJ ELZANOWSKI Elżanowski, A. 2001. A new genus and species for the largest specimen of Archaeopteryx, - Acta Paląeontologica Polonica 46,4,519_532. The Solnhofen (Sixth) specimen of Archaeopteryx is assigned to Wellnhoferia grandis gen. et sp. n. on the basis of qualitative, size-independent autapomorphies. Wellnhoferia differs fuom Archaeopteryx in a short tail with the estimated number of 16-17 caudals; a nearly symmetric pattern of pedal rays II-IV with metatarsals II and IV of equal length and digit [V substantially shorter than in Archaeopteryx; and the number of four (instead of five) phalanges of pedal digit IV, which most probably results from a phylogenetic reduction rather than individual vańation. A combination of large size and details of the pelvic limb suggests a locomotor specialization different from that of Archaeopteryx. K e y w o r d s : Archae opteryx, Wellnhoferla, birds, Aves, Jurassic, Solnhofen. Andrzej Elżanowski [email protected]], Institute of Zoology, University of Wrocław, ul. Sienkiewicza 2], PL-50-335 Wrocław, Poland. Introduction The vicissitudesof the taxonomic treatmentof the Archaeopterygidaehave led to the prevailingskepticismas to thepossibility of establishingspeciesdifferencesbetweenthe sevenstudiedspecimens:London (ltt), Berlin (}nd),Third('Maxberg',lost from a privatecollection),Haarlem (4th),Eichstiitt(silt),Solnhofen(6ilt),and Munich (7ft).Separatespecieshavebeenerectedfor theLondon, Berlin, andEichstźitt specimens(Stephan 1987), but none of them has been widely accepted and the name Archaeopteryx Iithographicahas been broadly applied to the lst through 6th specimens(Wellnhofer 1992).However, a new species,Archaeopteryxbavarica, has been erectedfor the Munich (7th)specimen(Wellnhoferlgg3),which is tentativelyacceptedhereas evidenceof species-leveldifferentiationwithin the genusArchaeopteryx. Paradoxically, the Solnhofen (6th)specimenowhich is the largest and, as it turns out,themost distinct amongthe major (fairly complete)archaeopterygidspecimens,is the only one thathas not yet been classified into a separatespecies.This specimen,of Acta Palaeontol.Pol. 46. 4. 519-532. 520 New taxon for the largest Archaeopteryx: ELZANOWSKI Table 1. Meństic and qualitative differencesbetweenthe archaeopterygidspecimens. uaudal vertebrae Eichstiitt Munich z2 ZI 5 5 Pedal disit IV phalanses Manual digit III movable ph.Ilph.2 art. S capulocoracoidarticulation loose movable loose Berlin ff 5 movable tieht ? Third ? ? ? Haarlem ,| ,| ,| ,| London Solnhofen 23 16-17est. 4 5? partly ,l fused loose tisht unknown origin in terms of exact horizon and locality, was identified as another Archaeopteryxspecimenand assignedto Archaeopteryxlithographica (Wellnhofer 1988a,1988b,1992). Wellnhofer reportedclose similaritiesin the tooth structureand limb proportionsbetweenthe Solnhofen and London specimensbut also noted and illustratedtwo striking differences:an abeffantphalangealformula of thepes,which has been interpretedas a pathology (seealso Osffom 1992)and the absenceof fusion betweenthe scapulaand coracoid, which has beenleft uninterpreted.A conservativetaxonomic treatmentof the Solnhofen specimenis justified in part by the context of its discovery and in part by its poor preservation,which has been made even worse throughthe unprofessionalhandling by its former private owner. The postcranialpart of the Solnhofen specimenis nearly complete,but most of the skull is gone. The vertebralcolumn, girdles, and proximal limb segmentsare heavily damagedby crushing and breaking againstone another.In addition, most long bones (including the tibiae and manualunguals)are collapsed,which makesthe comparisons of their diametersto thoseof otherspecimensimpossible.Not collapsedare only metacarpal III (in part),manual digit I phalanx 1, digit II phalanx2, digttIII phalanx 3, pubis, the right fibula, metatarsalI, metatarsalII (proximal half), pedal digit I phalanx 1, and pedal digit III phalanx3. The Solnhofen specimen was initially misidentified as Compsognathusand kept in a private collection before being identified as anotherArchaeopteryx specimen (Wellnhofer1988a,1988b).Apparently as a result of this particularhistoric context, Wellnhoferstressedthe many detailedsimilaritiesto Archaeopteryx,especiallyto the London specimen,and downplayed a few differenceshe noted (four phalangesin the fourth toe and unfused scapula and coracoid). However, detailed comparisons demonstratethat the Solnhofen specimen shows pronounceddifferencesfrom thęArchaeopteryxspecimensin meristic and qualitative characters(Table 1) as well as proportions(Tablesf-6), and that thereis no reasonto tręatthesedifferencesas casesof individual variation.Therefore,the Solńofen specimen is heretransferredto a new species,which is classifiedinto a new genusbecause of evidencefor species-leveldifferencesamongthe specimensthatremainin the genus Arc haeopteryx (Wellnhofer 1993). Systematic paleontology Class Aves Linnaeus, 1758 Family ArchaeopterygidaeHuxley, 1872 gen.n. Genus Wellnhoferi,a, Type species: Wellnhoferia grandis sp. n. ACTA PALAEONTOLOGTCA POLONTCA (46) (4) 521 Fig. 1. Weltnhoferiagrandis gen. et sp.r., the holotype Solnhofen (6th)specimen.The arrow points to the shortenedand narrowedterminal caudal vertebrae(followed by a mistakenly paintedextensionof the tail). Scale bar 10 cm. Derivation of the name: In honor of Dr. Peter Wellnhofer, Chief Curator Emeritus, Bayerische Staatssammlung fiir Pakiontologie und historische Geologie, Munich. Diagnosis. - As for the species. Wellnhoferiagrandis sp. n. Fig. 1. Archaeopteryx lithographica: Wellnhofer 1988a: figs. I, f . Ar c haeop teryx Iithog r ap hi c a: W elhthofer I 9 88b : pls. 1-8. Archae op teryx litho g rap hic a: W ellnhofer 1992: figs. 1, 2. Archae opteryx sp.t Ostrom I99f: ftg. 2B. 522 New taxon for the largest Archaeopteryx: ELZANOWSKI TableZ. Minimum depth(dorsoventraldiameter)to lengthratios (in%o)of manual(M) andpedal (P) phalanges measurablein the Solnhofen and other specimensof the Archaeopterygidae.The measurementsarę listed in Appendices I and2. Specimen MVI MIV2 PV1 PIIV3 P rt+ Eichstiitt 5.84 6.9 r f .7 TL.4 14.3 Munich 5.75 6.1 18.3 13.1 Berlin 6.0 8.2 6.2 8.4 8.9 Haarlem 15.1 1 8 I. 20.0 25.3 2r.1 London Solnhofen 12.8 15.0 Holotype: Solnhofen (6ft) specimen (Wellnhofer 1988a, 1988b, 1992) housed at the BtirgermeisterMtiller-Museum, Solnhofen (Bavaria, Germany). Ępe horizon: unknown (probably Upper Solnhofen Lithographic Limestone), Late Jurassic (probably Malm zeta2b,lower Lower Tithońan). Type locality: unknown (in all probability Altmtihl Valley, Bavaria, Germany). Derivation of the name: Latin grandis large. Material. - Only the holotype specimen including the nearly complete postcranial skeletonand the incomplete skull. Diagnosis. - Large archaeopterygidspeciesthat differs from Archaeopteryx species in having manual digit I with the ungual of approximatelyone third the length of the basalphalanx;pedaldigit IV short(lessthan80Vothelengthof digit III)and composed of only four phalangesincluding a long ungual(thelongestof all phalanges)with the flexor tubercle widely separatedfrom the ungual base; and a short tail with the estimatednumberof 16-17 caudals. Descripti See Wellnhofer(1988a,b, L992). Comparisons. - The differencesbetweenArchaeopteryxandWellnhoferiaare most evident in the autopodialsand tail, probably becausetheseparts are betterpreserved than the skull, girdles, and proximal limb segments,which largely defy detailed comparionswith other specimens. The scapula and coracoid are clearly separatein the Solnhofen (the largest),Munich, and Eichstźitt(the smallest) specimens,but firmly connectedin the Berlin and London (secondlargest)specimens.This variationis clearly independentof size and thusmore likely to reflect taxonomythanontogeny.The backwardslant of the pubis in the Solnhofenspecimenis estimatedas 128"(Wellnhofer1988b,199f), which is more than 110"approximatedfor the remaining specimensincluding the Third (Wellnhofer 1985,1993). In the manus,the relative depthsof the only two phalangesthat are measurablein this respectin the Solnhofen specimenand the only one in the Haarlem specimenare much higher than in the remaining archaeopterygidspecimens,which do not reveal a positive allometryof this dimension(Table2). Manual digit III phalanges1 andf are immovably connectedin the Solnhofen specimenby what appearsto be a convoluted suture(Wellnhofer1988b:fig. 5.4,1992:fig. 10B) and suggestsa partialfusion,which also occursin the oviraptorids,e.$.,Ingenia (H. osmólska personalcommunication). ACTA PALAEONTOLOGTCA POLONTCA (46) (4) 523 Table 3. Inter-and intradigitalproportionsof the manusin theArchaeopterygidae(digits in Roman, phalanges in Arabic numerals).In parenthesesareratiosbasedon at leastone approximatemeasurement.The measurementsare listed in Appendix 1. Specimen Alt digits Digit I Digit II I+II+III=IUUVo I +f =100Vo t +2 +3 = I00Vo Eichstritt f7.3+43.5+f9.f 6 8 . 8+ 3 1 . 2 Berlin 27.2+ 44.0+28.8 66.f + 33.8 (f3,3+ 10.2+44.2+23.3) ( 3 1 . 9 + 4 0 . 5 + 2 7 . 62)0 . 8 + 1 3 . 0 + 4 0 . 1 + 2 6 . 1 (34+39+f7)L Third Haarlem Solnhofen Digit III I+2+3+4=I00Vo 26.5+ 43.6+299 70.6+ 29.4' 7 5 . 1 + 2 4 . 9 f9.7+42.f+28.1 19.0+14.7+42.2+24.1 1 The ungual is not measurable. 2 Heller (1959). 3 Ostrom (1972). Table 4. Metatarsalratios (inVo) in the Archaeopterygidae.The measurementsare listed in Appendix 2. Specimen Eichstżitt =I00Vo tr+III+IV 33.0+35.2+31.8 IIyII 106.7 r05;7 Berlin 31.9+35.3+32.8 110.5 r07.7 33.f+33.6+33.2 1 1 0 .0 105.6 105.6 London Solnhofen 110.6 109.5 Munich Third m,/Iv The ginglymoid articulation between these phalanges is poorly developed in other specimensas wel| but they are clearly separateand disarticulatedin the Berlin specimen. A photographof the Third specimensuggeststhe presenceof two separatephalanges (Heller L959:fig. 9) but its descńber remarkedupon their .insufficient preservation' and curiously failed to provide their lengths althoughhe did so for phalanx 3. Manual digit III phalanges I and 2 are not preservedin the Haarlem specimen.The ungual of manual digit I is strikingly short,approximatelyone third the length of the basal phalanx.It is much shorterthan in threeother specimensand no allometric trend toward its shorteningis evident (Table 3). Most differencesbetweenWellnhoferia and unquestionableArchaeopteryx specimens are found in the foot, althoughthe preservationof feet makes them difficult to comparebecausethe feet of most specimensare exposedin side views. The only exceptions are the right foot of the Solnhofen specimen,which shows its venffal aspect, and the only preservedfoot of the Third specimen,which probably showsits dorsal aspect. The three main metatarsals(II, ilI, and IV) seem to be proximally fused in the Solnhofen specimen (althoughits peculiar limonite encrustationmay have obscured the sutures)and this fusion may indeed be more advanced than in other archaeopterygid specimensexceptfor the Third specimen,which showsevidenceof the proximal fusion (Heller 1959).MetatarsalII has been reportedto be longer,thatis, to have the trochlea more distal than metatarsalIV in the Eichstiitt specimen (Wellnhofer 1974),but its trochleais more proximal in the Third (pers.obs. on Heller's X-ray photograph)and probably Haarlem (Ostroml97Z) specimens.MetatarsaltrochleaeII and 5f4 New taxon for the largest Archaeopteryx: ELZANOVISKI Table 5. Inter-and intradigitalproportionsof the pes in the Archaeopterygidae(digits in Roman, phalanges in Arabic numerals).In parenthesesare ratios based on at least one approximatemeasurement.The measurementsare listed in Appendix 2. All digitsl Digit I Digit II2 Specimen I + I I + I I I + I V I + 2 = L 0 0 V o I + 2=I00Vo = 100%o Eichstżitt Munich Berlin 8 . 6+ f L 9 + 37.4+ 32.1 (9.6+ 17.7+ 37.5+ 35.2) 7.3+ 21.3+ 37.6+ 33.8 57.7+42.3 49.3+ 50.7 50.4+ 49.6 J 53.9+ 46.1 Digit IV I+2+3+4+5 = I007o 3 7 .5+ 3 3 .3+ 2 9 .2 4 (24.5+18.3+16.8 +21.4+ 19.0) 39.0+30.7+30.3 22.7+21.0+ 15.9+ 35.8+33.6+30.6 18.4+22.0 (48.7+ 51.3) Third London Solnhofen 6 1 .0+ 3 9 .0 Digit III2 I +2+3 = 100Vo 56.4+ 43.6 1 1 . 1+ 2 4 . 6+ 36.2+ 28.t 50.0+ 50.0 3 8 .3+ 3 3 .1 + 2 8 .6 (52.9+ 47.1) 4 9 .0+ 5 1 .0 3 8 .0+ 3 2 .8+ 2 9 .2 (24.6+20.9+abs. + 2 3 . 4+ 3 1 . 0 ) I Without the unsuals. 2 Wittroutthe unluals, which are not measurablein the Solnhofen specimen. 'Phalanx 2 not measurable. 4 Phalanx 5 (ungual)not measurable. IV arelevel in the Solnhofen Specimen(Table4), conveying a remarkablesymmeĘ to the tarsometatarsusof Wellnhofeńa, Pedal digit IV in the Solnhofen specimenhas only four insteadof five phalanges. The length and number of phalangesof pedal digit IV are unknown in the Third and Haarlem specimens.De Beer's (1954)claim of four phalangesin digit IV of the London specimen has never been credible (Ostrom 197f) and calls for a verification (Ostrom 1992).A single preservedfoot of the London specimenis exposedin medial view and digit IV lies underdigit III, which apparentlymadeit impossible to define the ends of phalangesexcept for the ungual, which is the only phalanx of digit IV that de Beer measured.Whateverits numberof phalanges,digit IV in the London specimenis close in lengthto digit III and thusmuch longer thandigit II (de Beer 1954:pl. II), as in the otherunquestionable Archaeopteryx.Incontrast,inWellnhoferia digit IV is close in lengrh to digit II (Fig. 2). There are at least two reasons to believe that the aberrant phalangeal formula f-3-4-4 of the Solnhofen specimenis anothertaxonomic differencefrom Archaeopteryx ratherthan a case of intraspecificvariation (contrąWe|Inhofer1992,Contra Ostrom 199f). First, very little variation, either inter- or intraspecific, in the number of phalangesis known to occur in extantbirds and only the Pteroclidaeand Caprimulgidae have the exceptional formula 2-3-4-4 (Forbes 1882). Some species of hawks (Accipitridae) have the two basal phalangesof the digit II fused and in one species,the Black-collared hawk (Busarellus nigricol/is), thesetwo phalangesare fused in the majority of specimens,but remain unfusedin some individuals (Olson 1982),whlch may be the only recorded case of intraspecific variation in the number of phalangesamongbirds in the wild. Second,thereis strongevidencethatthe number of phalangesin the Solnhofen specimenresultsfrom a reductionof one phalanx ratherthanthe fusion of two. The only threenon-ungualphalangesof pedal digit IV ACTA PALAEONTOLOGTCA POLONTCA (46) (4) 525 B Fig'f.Wellnhoferia grandis gen.et sp.n., theholotypeSolnhofen(6th)specimen,foot skeleton.The right foot in plantar (caudal)view and its semidiagrammaticreconstruction.Note thę shortdigit I ungual (with a partly displacedhomy sheath)and the digit IV ungual with a separateflexor tubercleand very weak ventral curvature.The ventral outlines of phalangesll/3,IIIJ3,IIIJ4,andthetwo terminalphalangesof digit IV (all left white) are unknown as are the exact lengthsof unguals II and III. Also unclear are the exact proximal outlines of metatarsalsII-IV and the resting position of the hallux. Scale bar 10 mm. in the Solnhofenspecimenhave comparablerelative lengthsto phalanges1,2, and4 in the specimenswith the usual phalangealformula (Table 5) and clearly none of them arose by fusion (that is, the lack of separationin the embryo) of two welldevelopedphalanges.Exclusive of the long ungual,digit IV of the Solnhofenspecimen is by I5Vo shorterthan in Archaeopteryx(Table 5). This indicatesthat most likely reducedin the Wellnhoferia|ineagewas the third phalanx,which inArchąeopteryx is the shortestand its relativelengthamountsto approximately16-Il%oof the total digit length (Table 5). The outertoe (digitIV) of the Solnhofenspecimenis relativelyshorterandits inner toe (digit II) is relatively longerthanin Archaeopteryx(Table5). In conjunctionwith the symmeĘ of tarsometatarsus, this makes the entirepatternof the threemain pedal 526 New taxon for the largest Archaeopteryx: ELZANOWSKI rays (II-IV) of Wellnhoferia (Fig.2) more symmetrical than tn Archaeopteryx. The elongation of digit II in the Solnhofen specimen correlateswith its phalanx f being longer than phalanx 1 (with the ratio 5I/49) and the Third specimenreveals an essentially identical ratio (Table 5). In contrast,in the London and EichstŻittspecimensthe two phalangesareof equalor nearly equallength,and in theBerlin specimenphalanx2 is much shorterthan phalanx 1 (Table 5). This variation is inconsistentwith a single allometric trend. Pedal ungualIV of the Solnhofenspecimen,as preservedin its right foot (Fig. 2), differs substantiallyfrom the unguals of the other toes as well as those of the other specimens (with a possible exception for the Third specimen, in which the pedal unguals are not identifiable).It is much longer than in Archaeopteryxand approaches one third of the total digit length as the longest of all phalanges(Table 5). It is nearly straightventrally and has the flexor tuberclewidely separatedfrom the ungual base.In contrast,otherarchaeopterygidungualshave ventralcurvaturesat leastequal to and or greaterthan the dorsal curvaturesand their flexor tuberclesare not differentiatedfrom the expandedungualbases. The bony tail of Wellnhoferiats much shorterthan that of Archaeopteryx,which has2l-23 caudals(Table1).In the Solnhofenspecimen,the caudalseriesis truncated at a break in the slab and ends with caudal vertebra 15, which is broken, incomplete, andthinerthancaudalvertebra14 (Fig. 1;seealso Wellnhofer1988b:fig. 5). Both vertebrae(14 and 15) are much, by 5 mm, shorterthan caudal vertebra13.In Archaeopteryx a comparableshorteningoccurs only at the end of the bony tail and affectsterminal vertebrae21-22or2f-f3 (Wellnhofer1974:table6.2,Wellnhofer1993:fig. 10, table911).Theconditionof caudalvertebrae14 and15in theSolnhofenspecimenindicates that the bony tail of Wellnhoferia may have originally extendedat the most for anothertwo diminutive vertebrae,which gives the maximum estimateof L7 caudal vertebrae,which is 4-6 vertebraeless than in Archaeopteryx. The fragmentaryThird and Haarlem specimens,which are very close in size (Appendices 1 and 2), are likely to pose problems for any taxonomic revision of the Archaeopterygidae.The Third and Solnhofen specimensshow at least one similarity, thatis, pedal digit II with phalanx 1 shorterthan phalanx? (Table 5) and the proximal fusion of their metatarsalsII-IV may have possibly been more pronouncedthan in other specimens.Unfortunately,the most diagnostic characterstatesincluding pedal formula, length of the tail, and the condition of scapulocoracoidarticulation are unknown in either of the two fragmentaryspecimens(Table 1). A cladistic analysis is required to determinethe mutual relationshipsof Archaeopteryx andWellnhoferia, but their intramembralproportions(Table 6) and severaldetailed similarities suggesta close relationship.Both Archaeopteryx and Wellnhoferia have a sigmoid premaxillo-maxillary suture, share identical scapulae (Wellnhofer 1988a),and their pelvic girdles reveal detailed similarities in the shape of the pubic apron and the intermediateprocess of the ischium (althoughthe angular positions of the pubis may vary). The dentitionof the Solnhofen specimenis very similar to thatof the London specimen:at least threeout of four premaxillary teethshow a waist at the mid-heightof the crown, and at least one maxillary toothhas the crown roundedin the basal part and distinctly recurvedin the apical part. ACTA PALAEONTOLOGTCA POLONTCA (46) (4) 5f'7 Table 6. Intramembralratios (Vo)in the Archaeopterygidae(orderedfrom smallest to largest specimen). In parenthesesare ratios basedon at least one approximatemeasurement.The measuręmentsarę listed in Appendices I andf. Specimen H u + U l + M c I I = L 0 0 V o Hurul F e + T i + M t t I I = I 0 0 % o Eichstżitt 4 3 . 3 + 3 8 . 1 + 1 8 . 6 113.7 3 0 . 8+ 4 4 . 1 + 2 5 . 1 ( 4 1 . 4 +3 9 . 8+ 1 8 . 8 ) ( 1 0 3 .8 ) ( f 9 . 3 + 4 5 . 1 + 2 5 . 6 ) Munich Bęrlin 4 2 . 8 +3 8 . 2 +1 9 . 0 II2.I Thtud London Solnhofen 42.5+ 38.0+ 19.5 z 111.9 (rr2.2) Fe/Ti 69.8 (6s.0) ( 3 2 .6 + 4 4 .3+ 2 3 .1 ) 7 3 .5 3 2 .3+ 4 4 .3+ 2 3.4 73.0 ( 3 2 . 6 + 4 3 . 9 + 2 3 . 5 ) (74.4) (32.4+ 44.6+f3.0) (72.8) MtUVDigIIIT 1,f5.8 146.2 (138.1) r32.5 (131.e) 1 Heller's (1959)figures for the forearm bones are probably inaccurate(seeTable 1). z Metacarpal II is not measurable. J Non-ungual phalangesonly. Discussion. - A direct body mass estimateof the Solnhofen specimencannotbe calculated from the circumferences of major weight-bearing long bones, which are crushed.However,thelineardimensionsof the Solnhofenspecimenaverage1.1times thosethe London specimen(Appendices 1 and 2), which translatesto 600-622 gbody massassuming451468 g for theLondon specimen(Elzanowskiin press).Becauseof its large size, some charactersof the Solnhofen specimen,such as the fusion of digit II phalanges1 and 2 may possibly be size-dependent.Howeveą most of the differences fromArchaeopteryx,includingthecharacterstatesusedin thediagnosis,as well as the loose scapulocoracoidarticulation,greatdepthof manual phalanges,especially those of manual digit II (Table2), andthe long pedal digit II phalanx 2 (Table 5) are clearly independentof size and thus substantiatea taxonomic separationof the Solnhofen specimen. Houck et al. (1990) concluded that the six then known specimens(including the holotype of Wellnhoferia)representa single species (A. Iithographica),becausetheir allometricscalingis consistentwith a single growthseńes and someosteologica|featuressuggestthatnone of them is fully grown. It is true thateven afterthe adjustments of someincorrectmeasurementsand the inclusion of theMunich specimen,some9SVo of metńc trait variation is size-dependentand thus can be fitted within a single allometric curve (Elzanowski & Paśkoin preparation).However, allometric scaling alone cannot differentiatebetweenontogeneticallomeĘ in a real growth series and static allomeĘ in a set of closely relatedspeciesbecauseallometńc coefficients may be maintainedamong closely related species (see e.g., Gould 1971 and references therein).Therefore,the conclusion reachedby Houck et aI. (1990)hinges on their interpretationof the archaeopterygidskeleton as being subadult by the standardsof nonaviantheropods(coelurosaurs).However,the assumptionthatpńmitive birds were reachingthe sameossification stageas their theropodancestorsis highly questionable. The ońgin of birds was accompaniedby a substantialreductionof size and avian flight may have originatedas ajuvenile defenseadaptation(Elzanowski 2001),which makes some involvement of paedomorphosisin the origin of birds a likely possibility. Accordingly,in theratitesthepectoralgirdle is peramorphicandreachesa stagecomparable to thatof adult coelurosaurs(Elzanowski 1988),which suggestspaedomorphosis at some earlier stageof avian evolution. 5ZB New taxon for the largest Archaeopteryx: ELZANOWSKI Despite a great size difference between the smallest (Eichsńtt) and the largest (London) specimen of Archaeopteryx,not a single unequivocally age-relateddifference could be determinedamongthe five first describedspecimens(Howgate1985). The regressionof the tibia/femurlengthratio on body size is consistentwith the interpretation of archaeopterygid specimens as fully grown individuals (Callison & Quimby 1984)and the faint impressionsof theright wing and tail feathersin the smallest (Eichstiitt)specimendo not reveal any differencefrom the plumageof larger specimens (Wellnhofer 1974).Houck et al. (1990)list (in a footnote)free cervical ribs, separatesacralvertebrae,unfusedscapulocoracoid,and the lack of ossified sternumas evidence for thejuvenile to subadultage of the archaeopterygidspecimens.In fact, (1) the cervical ribs are known to be free only in the EichstźittMunich and Berlin specimensbut not preservedin the large specimens.If the cervical ribs were free in the large specimens,as Houck et aI. (1990)tacitly assume,it would be more likely a paedomorphic characterof the Archaeopterygidaethan a juvenile characterof all known specimens,both small and large.(2)The boundariesbetweenthe centraof sacralvertebrae remain distinct in both the archaeopterygidsand many coelurosaursbut even in the smallest (Eichstótt) specimenthe five sacral vertebraeare coossified (Wellnhofer 1974) and no more independentthan in nonavian theropods.(3) The scapula and coracoid are firmly connectedin the Berlin, London, and Third but not in the Eichstiitt, Munich and Solnhofen specimens,which showsthatthe condition of scapulocoracoid articulationdoes not correlatewith size and makes the single growth seriesinterpretation untenablebecausethe Solnhofen specimen is the largest of all known archaeopterygid specimens.(4) The absence of the bony sternum in most archaeopterygid specimensis probably a preservationartifact,as the sternumis first to be lost from a decaying avian cadaver (Bickat 1984),and its interpretationas a juvenile character has been invalidated by the discovery of the bony sternumin the Munich specimen (Wellnhofer 1993). Wellnhofeńa may have differędfromArchaeopteryx in the locomotor adaptations. The foot of Wellnhoferiais more symmetńcal (Fig. 2), which suggestsa more cursońal adaptationthaninArchaeopteryx (Coombs t9l8), and themore backwardpubic orientation may possibly be correlatedwith more cursorial habits. However, the unique shape of pedal ungual IV remains to be interpreted.The forelimb to hindlimb ratio (1.02) is essentially the same as in the London specimen (1.00),which may suggesta higher wing loading (unlessWellnhoferiahadrelatively longer flight feathers),heavier flight, and an even more difficult takeoff than in Archaeopteryx.Also, a short tail suggeststhe aerodynamicsof flight to be different from thatof Archaeopteryx. None of the differencesbetweenArchaeopteryx andWellnhoferia are as dramatic as some of thoseonce proposedto taxonomically distinguishbetweenthe London and Berlin (Petronievics 19f7) and betweenthe Eichstiitt and all other specimens(Howgate 1985).Claiming exaggerateddifferencesmarredprevious attemptsto subdivide Archaeopteryx (Nopcsa 1925),demonstratingthe necessity of a careful taphonomic analysisprior to taxonomicor functionalcomparisons.Ruben et al.'s (1997)speculations aboutthe mechanismsof pulmonaryventilationbeing differentinArchaeopteryx and the theropods,which are based on a reconstructionthat heavily exaggeratesthe backwardslantof thepelvis rnArchaeopteryx,visualizethepossiblefunctionalimpact ACTA PALAEONTOLOGTCA POLONTCA (46) (4) 5f9 of theonceclaimeddifferencesin positionof thepubis (Howgate1985)if theyweren't post mortemdeformations,and make them even less likely than 'catchingthe pelvis in the act of rotation' (Walker 1980)at the very first momentof divergenceof birds with the modernavian pelvis. The existenceof more thanone archaeopterygidspeciesis not unexpected(Olson 1987; Stephan 1987; Ostrom, 1992; see also Bonde 1996). Well-developed and clearly functional wings of the archaeopterygidssuggesta high probability of accidentalcolonizationof nearbyland massesand hypotheticalislands,which may have been presentbetweenthe land masses(Olson 1987; Chatterjee 1997).On the other hand, the interchangebetweenpopulationsover vast stretchesof water must have been low to nonexistentbecause of a limited control of flight, which facilitates allopatric speciation. Acknowledgments I thank P. Wellnhofer (Bayeńsche Staatssammlung fiir Paliiontologie und historische Geologie, Munich) for discussion and photographs of the Solnhofen specimen; M. Róper and Btirgermeister Ntirnberger (Biirgermeister-Mtiller-Museum, Solnhofen) for access to the Solnhofen specimen; J. T. Groiss (Universitiit Erlangen-Ntirnberg) for providing F. Heller's archive mateńals on the Third specimen; H. osmólska (Instituteof Paleobiology, Warsaw) and D. S. Peters (Forschungsinstitut und Museum Senckenberg) for careful reviews; Ł. Paśko(University of Wrocław) for his expert computer processing of figures; and Poland's State Committee for Scientific Research (KBN) for support by grant # 6PO4C 059 l7 . References Beer de' G.R. 1954.Archaeopteryxlithographica.68pp. Bńtish Museum (NaturalHistory),London. Bickart, K.J. 1984. A field experiment in avian taphonomy.- Journal of VertebratePaleontology 4, 525-535, Bonde, N. 1996.The systematicand classificatory statusof Archaeopteryx' - Museum of Northern Ańzona Bulletin 60. I93-I99. Callison, G. & Quimby, H.M. 1984.Tiny dinosaurs:arethey fully grown?- Journal ofVertebratePaleontology3,200-209. Chatterjee,S. 1997.The Riseof Birds.3l2pp. The JohnsHopkins University Press,Baltimore andLondon. Coombs, W.P. 1978.Theoreticalaspectsof cursorial adaptationsin dinosaurs. - Quarterly Review of Biology 53,393418. Elzanowski, A. 1988. Ontogeny and evolution of the ratites.In: H. Ouellet (ed.),Acta XIX Congressus Internationąlisornithologici,2037_2046, University of ottawa Press, ottawa' Elżanowski, A. (in press). Archaeopterygidae(Upper Jurassic of Germany). In: L.M Chiappe & L.M. Witmer (eds.),Mesozoic Birds: Above the Heads of Dinosaurs. The University of California Press, Berkeley. Elżanowski,A. 2001.The life sĘ|eof Archąeopteryx(Aves).- Publicaciones Especiales de IaAsociación P aleontológica Ar gentiną7, 9 L_I00, Forbes,W.A. 1882.On thevariationfrom thenormalstructureof footin birds.-The lbis (1E82),386-390. Gould, S.J. 1971.Geometric similarity in allometric growth:a contributionto the problem of scaling in the evolutionof size.- ArnericanNąturalisl 105. 113-136. Heller, F. 1959. Ein dńtter Archaeopteryx-Fund aus den Solnhofener Plattenkalken von Langenaltheim (Mfr.). - Erlanger geologischeAbhandlungen 3I, I-25. 530 New taxon for the largest Archaeopteryx: ELZANOWSKI Houck, M.A., Gauthier,J.A., & Strauss,R'E. 1990.Allometńc scalingin the earliestfossil bird,Archaeo. pteryx lithographica.- Science247,195-198. Howgate,M.A. 1985.Problemsof theosteologyof Archaeopteryx.IstheEichstrittspecimena distinctgenus?In; M.K. Hecht,J.H. Ostrom,G. Viohl, & P. Wellnhofer(eds.),TheBeginningsof Birds,I}5-IIŻ . Freunde des Jura-Musęums'Eichstiitt. Nopcsa, von, F. 1925. Bemerkungen zu Petronievics seinen Arbeiten iber Archąeopteryx. - Annales gćologiquesde la PćninsuleBalkanique8,104_110. Olson, S.L. 1982.The distributionof fused phalangesof the inner toe in the Accipitridae. - Bulletin of the B ritish O rnithological Club 102: 8-I2. Olson, S.L. 1987.The Beginningsof Birds [a review].- American Scientist75,74-75. ostrom, J.H. 1972. Description of the Archaeopterył specimen in the Teyler Museum, Haarlem. Koninklige NederlandseAkądemie vąn Wetenschappen,Proceedings B 75, 289_305. Ostrom,J.H.I99f . Commentson thenew (Solnhofen)specimenof Archaeopteryx.- ScienceSeriesNatural History Museum of Los Angeles CounĘ 36,25_27. Petronievics,B. 1927, Nouvelles recherchęssur l'ostóologie des Archaeornithes,- Annales de Palćontologie 16,39-55. Ruben,J.A., Jones,T.D., Geist,N.R., & Hillenius,W.J. 1997.Lung structureandventilationin theropoddinosaursand early birds.- Science278, 1267-1270. Stephan,B. 1987.UrvÓgel.216 pp, ZiemsenVerlag, WittenbergLutherstadt. Walker, A.D. 1980.The pelvis of Archaeopteryx.- GeologicalMagazine 1,17,595-600. Wellnhofer, P, 1974' Das ftinfte Skelettexemplar von Archaeopteryx. -Palaeonto7raphicą A 147, r69-fr6. Wellnhofer, P. 1985. Remarks on the digit and pubis problems of Archaeopteryx. In: M.K. Hecht, J.H. ostrom, G. Viohl, & P. Wellnhofer (eds.),The Beginnings of Birds, II3-I22, Freundędes JuraMuseums, Eichstiitt. Wellnhofer,P. 1988a.A new specimenof Archaeopteryx.- Science240,I79VI792. Wellnhofer, P. 1988b.Ein neuesExemplar von Archaeopteryx.- Archaeopteryx 6, I-30. Wellnhofer, P , 1992,A new specimenof Archaeopteryx ftom the Solńofen limestone. - Science Series Nątural History Museum of Los Angeles County 36,3_23. Wellńofer,P.1993, Das siebteExemplarvonArchaeopteryxals den SolnhofenerSchichten,-Archaeopteryx11,I47. Norły takson dla największego (Archaeopterygidae) okazu praptaków ANDRZEJ ELZANOWSKI Streszczenie Solnhofeński,czyli SZóStyokazpraptakówprzeniesionyZostaje z Archaeopteryxlithographica von Meyer, 1861 do Wellnhoferiagrandis gen. et sp. n. na podstawie autapomorfiiniezaleŻnychodwielkościciała,w tym cechjakościowych,merystycznych i proporcji. okaz ten rózni sie od okazów Archaeopteryx krótszym ogonem o szacunkowejllczbte kręgów 16_17,bardziejsymetrycznąbudowąstopy z kośćmi sródstopiaII i IV jednakowejdlugościi palcem IY zb|tzonymdługością do palca II, a więc Znaczn|ekrótszym n|z u Archaeopteryx,i składającymSięz 4 zamlast5 paliczków, Taka budowa stopyprzy Stosunkowoduzych tozmtatachciałasugerujerówniez nieco inną niz u Ar chaeop teryx, prawdopodobnie b ardziej kursori alną, specjali zację lokomototyczną. ACTA PALAEONTOLOGTCA POLONTCA (46) (4) Appendix 531 1 Revised length measurementsof the wing bones in the Archaeopterygidae(in mm). Approximate measurementsin parentheses.Left and right elementsmarked by superscripts. Eichstiitt Munich (ss.0) Humerus 4I.5t Ulna Metacarp. II 36.5 35.0 5.2 r7 . 8 Metacarp. trI 16.5 Digit vph. I 15.4 25.0 23.0 20.0 min. depth Radius Metacarp.I 5 3 .0 5 3 .0 '7.0 Berlin Haarlem2 London Solnhofen 63.0 (7f.u) n/m 75.0 83.0 56.21 (62.0r+ ?)3 n/m 67.0 (74.0) 54.4 (63.0t)i nlm (63.0) (74.0) (7.0) Thirdl (r0.0) (33.0) 28.0 f4.5r-24.gr (30.0) 2L5 n/m 1.3 n/m r0.0 n/m n/m n/m 34.4 n/m 29.4 n/m n/m 23.3 n/m 28.0 f.4L-f3r 0.gl-1.0r 1.15r 1,9 nlm Digit Vungual 7.0 10.6 11.0 (r2.0) 9.7 n/m 9 .3 Dig t IVph. 1 10.1 r2.5 15.fl-rs.4r ( 1 e .0 ) n/m n/m 19.0 Dig tlVph.2 14.5 18.0 (r9.4) (2f.0) n/m n/m 27.0 min. depth 1.0 1.1 nlm n/m 2.4r D git IVungual D git IIVph. 1 D gitrIUph.2 D git IIVph. 3 n/m (e.2) r.2l 13.2 n/m nlm 18.0 (4.8) n/m 6.4 n/m n/m n/m 7.9 (2.2) 9.5 5.0 nlm 4.0 12.3 8.0 n/m n/m n/m 6.1 (16.0) n/m r/m n/m 9.0 n/m r7 .5 10.0 Digit IlVungual r2.0 6.5 nlm (1s.0) I Heller (1959)provided round millimeter values, which are here consideredto be approximate. z Ostrom(I97D. 3 Heller (1959)reported63 mm for the left radius and approximately62 mmfor the ńght ulna. The figure Hor ulna is most probably too low as it implies the foręarm to be relatively shorter than in any other archaeopterygidspecimen and the ulna to be shorterthan the radius (unless the wings were asymmetric).The left radius is halved betweenthe two slabs and eachfragmentendswith a splinter,which makes a precise measurementof the total length extremely difficult and thus the figure is ffeatedhere as an approximate value. 53f New taxon for the largest Archaeopteryx: ELZANOWSKI Appendix 2 Revised lengthmeasurementsof the leg bonesin the Archaeopterygidae(in mm). Approximate measurementsin parentheses.Left and right elementsmarked by superscripts. Eichstiitt Munich Berlin Thirdl London Solnhofen 5f.2 (s8.0) (61.0) (67.0) (53.0)I (4ó.5) ( 7 1 .s' ) 7r.0 (7e.5) (82.0)i 92.0 Fibula 50.5 69.5 tbd nlm n/m 82.4 Metatarsale I n/m n/m n/m n/m n/m Metatarsale II4 f835 n/m Metatarsale IIIa 30.2 2735 Femur Tibiotarsus Metatarsale[V4 37.0 40.5 37.0 (10.0) MetatarsaleV 6.5 Digit vph. 1 5.5r 7.1 min. depth Digit Vungual 0.7 3 .5 Digit IVph. 1 (7.r) 1.3 5.2 (6.0) Digit IVph. 2 7.tr r/m (3s.0) (37.0) (38.0) (42.0) (3e.0) 45.0 7.9 10.5 n/m 8.8 11.0 nlm n/m 1.86 1.65 n/m (6.8) (e.8) 11.0 12.o 12.5 5 .5 8 .2 7.0 (e.s) (10.0) 5.8 7.Ot-7.4r n/m 10.8 9.6 (11.0) 8.5 9.0 8 .2 1.05 (10.5) min. depth Digit trVungual 5.4'-4.8r n/m (11.0) n/m 12.7 13.7 11.0 11.8 (e.s) 10.5 n/m r.9 1.9 8.8 n/m (14.0) nlm 7.ff nlm nlm 6.4t-6.6r nlm nlm 10.0 8.5 4.9 n/m n/m absent n/m 5.61-5.9r n/m n/m o.ffi.8 0.9 0.9 n/m 9.5 2.4 nlm 6.f 6.8 r/m 6.1 (r) Digit IV/ph. 2 5 .0 Digit IV/ph. 3 4.6t4.7r Digit IV/ph. 4 4.9 Digit IV/ungual n/m 11.0 8.0 6.0 Digit IV/ph. I min. depth 1.1 6.9 t-7.0r (47.s) nlm 9.0 8.0 7.0 0.8 8.4 44.0 n/m Dig t IIVph. 1 Digit IIVph. 3 45.0 nlm 5.f I-5.5r n/m Digit lVungual Dig tnUph.2 9.9 (40.0) (s.s) nlm (11.0) (r2.6) 1 From Heller (1959) except for metatarsalsII and IV and pedal phalanges,which were measuredon the ońginal Heller's X.ray photographkindly provided by Prof. J.T. Groiss. ^ z Distal end recrystallized. t A part of the tarsometatarsusincluding the fused distal tarsals. 4 These measurementsnecessitatemore scrutiny becauseof the difficulty in obtaininga precise superposition of bone frasmentsfrom the two slabs.
© Copyright 2026 Paperzz