VIDEO SUMMARIES: DIFFERENTIATION * What*you*need*to*know:! • The*gradient*at*a*point* Differen(ate!an!equa(on!to!get! • Differen'ate,+then+subs'tute+x+value+ a!gradient! • Sta>onary*points* ! • Differen'ate,+set+f’(x)+=+0,+then+solve+ We!do!this!by:! • Maxima*or*Minima* 1. Mul(plying!the!power!by! • 2nd+differen'al,+Maxima+(>),+Minima+(+)+ the!coefficient! • Gradient*of*a*tangent*line* 2. Subtrac(ng!1!from!the! • Same+as+gradient+at+a+point+ power! • Gradient*of*a*normal*line* • Nega've+reciprocal+of+tangent+(>1/m)+ Steps%(frac5on%!%root)! Steps%(root%!%frac5on)! 1. Draw!root!sign! 1. Keep!power!as!top!of! 2. Move!bo3om! frac@on! (denominator)!in!front!of! 2. Put!root!number!on! root! bo3om!of!frac@on! 3. Leave!top!(numerator)! 3. Get!rid!of!root!symbol! as!power!of!x! Note:%if!no!root!number! denominator!=2! DIFFERENTIATION*OVERVIEW ROOTS%AND%EXPONENTS% What%you%need%to%know% n d d x = x n WWW.LEARNCOACH.CO.NZ VIDEO SUMMARIES: DIFFERENTIATION FRACTIONS*AND*POWERS* A"denominator"can"become"a"numerator,"if"you"make"the"powers"nega8ve" 2 −3 5⋅ (x − 5) 5 = 2 3 17 17 ⋅ (x − 5) GRAPHS' LeJ)&)right) go)to)same) point) What)you)need)to)know) Not)) smooth)&) con%nuous) Flat) f%‘(x)%=)0) Part'1:'Equa%on,)f(x)% Part'3:'Concavity,)f%‘‘(x):) )a))read)graph)values) )f))concave)up)>0) )b))lim)f(x))as)x)!)a) )g))concave)down)<0) )c))not)differen%able) )h))point)of)inflec%on)=0) ) ) Part'2:'Differen%al)f%‘(x)) )d))not)defined) )e))sta%onary)points) WWW.LEARNCOACH.CO.NZ VIDEO SUMMARIES: DIFFERENTIATION * Natural'long'(ln)' Euler’s'number'(e)' Trig'func7ons'(sin…)' What*you*need*to*know:* Use'differen7a7on'table'to'differen7ate'func7ons' f (x) = sin x + cos x f (x) = ln x f (x) = e 2 x 1 f '(x) = cos x − sin x f '(x) = f '(x) = 2e 2 x x & For$when$one$differen,able$term$is$inside$another$differen,able$term$ Steps& For$example:$ 1. Iden,fy$inner$and$outer$terms$ 2. Differen,ate$inner$and$outer$ 3(x 2 − 2x)3 3. Mul,ply$inner$’$and$outer$’$ 4. Subs,tute$inner$ Inner$ Outer$ 3 3(inner) Inner$’$x$Outer$’$$ x 2 − 2x 2 Outer$’$ Inner$’$ (2x − 2)⋅ 9(inner) 9(inner)2 2x − 2 Subs,tute$inner$ (2x − 2)⋅ 9(x 2 − 2x)2 DIFFERENTIATION*SKILLS CHAIN&RULE WWW.LEARNCOACH.CO.NZ VIDEO SUMMARIES: DIFFERENTIATION PRODUCT(RULE( For$when$you$have$2$differen1able$terms$mul1plied$by$each$other$ For$example:$ 2 Product$Rule:$ 3 3x (x + 2) f$ 3x 1. Differen1ate$both$terms$ 2. Put$into$equa1on$ 3 2 Steps( g$ x +2 3x 2 .3x 2 + 6x(x 3 + 2) g$’$ 2 f$’$ 3x 6x 9x 4 + 6x 4 +12x QUOTIENT(RULE( For$example:$ For$when$you$have$2$differen1able$terms$in$a$frac1on$ Quo1ent$Rule:$ 3 3x + 2 x5 f$ 3 3x + 2 f$’$ 9x 2 Steps( 1. Differen1ate$both$terms$ 2. Put$into$equa1on$ g$ 5 x g$’$ 4 5x ' ⎛ f ⎞ x 5.9x 2 − (3x 3 + 2)5x 4 9x 7 −15x 7 −10x 4 = ⎜ ⎟= 10 5 2 x ⎝g⎠ x ( ) −6x 7 −10x 4 −6x 3 −10 = = 10 x6 x WWW.LEARNCOACH.CO.NZ VIDEO SUMMARIES: DIFFERENTIATION ) For$when$x$and$y are$explained$by$a$3rd$variable$ For$example:$ Steps) dy Parametric$Func9on$ 2 1. Differen9ate$both$func9ons$with$ y = 3t x = 6t =? respect$to$the$3rd$variable$ dx 2. Flip$one$of$the$answers$ 3. Mul9ply$together$ dx dt 1 dy =6 = = 6t 1 6t dt dx 6 dt =t 6 t x = 6 6 & Steps& r = 1.5t 2 The*radius*increases*according*to*the*formula:* 1. Iden'fy*the*rate*you*want*to*find* At*what*rate*is*the*area*inside*the*ripple*increasing** 2. Iden'fy*the*rates*you*have*been*given* aHer*2*sec?* dA 2 3. Use*the*parametric*equa'on*to** A = r dA dr =2 r find*what*is*missing* = 3 t dr 4. Find*missing*differen'al** dt dt or*repeat*as*above.* dA 2 2 2 = 3t x r = 3t x (1.5t ) 5. Subs'tute*and*solve* dA dr dA dt = x dA dt dt dr At*2*sec* = 3(2) (1.5(2) 2 ) 2 = 678.6 cm2/s* dt PARAMETRIC)EQUATIONS EXCELLENCE&QUESTIONS&–&PARAMETRIC π π π π π WWW.LEARNCOACH.CO.NZ VIDEO SUMMARIES: DIFFERENTIATION EXCELLENCE&QUESTIONS&–&MAXIMUMS& Steps& A*cylinder*of*height*h*cm*and*radius*r*cm*is*inscribed*inside* 1. Iden'fy*what*you*need* a*sphere*of*radius*10*cm.* 2. Write*equa'on*that*includes*all*variables* Find*the*value*of*r*that*maximises*the*volume*of*the* 3. Get*in*terms*of*one*variable* cylinder.* 4. Differen'ate*and*set*equal*to*0* You*do*not*need*to*prove*that*the*volume*is*a*maximum* 5. Solve*for*variable* and*not*a*minimum.* 6. If*it*is*not*the*answer*use** dV V = πr 2 h h = 400 − 4r 2 solu'on*to*solve*for*other*answer** dr 20 2r h V = πr 2 400 − 4r 2 4π r 3 2 dV = 2π r. 400 − 4r − =0 dr 400 − 4r 2 WWW.LEARNCOACH.CO.NZ r= 200 = 8.16 cm* 3
© Copyright 2026 Paperzz