GP4-βHW9 PAP Precalculus Chapter 9.2 β Law of Sines Solution 180! = 45! + 95! + π΄ π΄ = 40! sin 95! sin 45! = 5 π 5 sin 45! π= sin 95! π β 3.55 sin 95! sin 40! = 5 π 5 sin 40! π= sin 95! π β 3.23 Solution β = 3 sin 40! β 1.93 Since β < π < π, there are two possible triangles Triangle 1 sin 40! sin πΆ = 2 3 3 sin 40! !! πΆ = sin β 74.6! 2 180! = π΄ + 40! + 74.6! π΄ = 65.4! sin 40! sin 65.4! = 2 π 2 sin 65.4 π= β 2.83 sin 40! Triangle 2 sin 40! sin πΆ = 2 3 3 sin 40! πΆ = sin!! β 74.6! , or 105.4! 2 180! = π΄ + 40! + 105.4! π΄ = 34.6! sin 40! sin 34.6! = 2 π 2 sin 34.6! π= β 1.77 sin 40! β = 31 sin 85! β 30.88 π = 30 cm is not long enough to form a triangle. π > π, so only one triangle can be formed. β = 31 sin 29! β 15.03 β < π < π, so two triangles can be formed.
© Copyright 2026 Paperzz