Useful Equations for PHYS140 Exam 3 2 q1 q2 1 q1 q2 1 F~ = k 2 = r̂ where k = = 9 × 109 NCm2 2 r 4π0 r 4π0 ~ ~ =F E q F~net = ΣF~i 1 2~ p on axis = 4π0 r3 ~ dipole E ~ dipole = E 1 p~ perpendicular plane 4π0 r3 1 2λ 4π0 r ~ disk | = η [1 − √ z |E ] 20 z 2 + R2 ~ sphere | = 1 Q |E 4π0 r2 η z>0 20 ~ plane = E η − 20 z < 0 ~ line | = |E ~ capacitor | = |E η 0 ~ ·A ~ (electric flux through a flat area) φ=E ˆ ~ · dA ~ (electric flux through a surface) φ= E ˛ ~ · dA ~ = Qin (electric flux through a closed surface) E 0 U = U0 + qEs U =k ie = ne Avd ne eτ A E m I = ne evd J= A ΣIin = ΣIout ie = ~ = k q r̂ = 1 q r̂ E r2 4π0 r2 φ= Q 0 A E= 1 q1 q2 q1 q2 = r 4π0 r ~ Udipole = −pEcosφ = −~ p·E ne e2 τ m J = σE 1 m ρ= = σ ne e2 τ σ= ∆V R Pbat = I I= W = F ∆s = qEd (∆VR )2 R = R1 + R2 + R3 + ... series resistors PR = I∆VR = I 2 R = Req Req = ( Q = Q0 e−t/τ ~ pointcharge = µ0 q~v × r̂ B 4π r2 ~ currentsegment = µ0 I∆~s × r̂ B 4π r2 µ0 N I Bcoilcenter = 2 R µ ~ = AI ˛ ~ · d~s = µ0 I E U = qV V = Es inside parallel-plate capacitor 1 qi qi = Σk 4π0 r r ˆ ~ · d~s ∆V = Vf − Vi = − E V =Σ dV ds = Σ(∆V )i = 0 Es = − ∆Vloop Q = C∆Vc Ceq = C1 + C2 + C3 + ... parallel capacitors Ceq = ( C= 1 1 1 + + + ...)−1 series capacitors C1 C2 C3 Q 0 A = ∆Vc d 1 1 1 + + + ...)−1 parallel resistors R1 R2 R3 µ0 N I = µ0 nI I ~ = q~v × B Bsolenoid = F~onq ~ F~wire = lI~ × B fcyc = qB 2πm µ0 I2 µ0 lI1 I2 F~wires = I1 lB2 = I1 l = 2πd 2πd dφm =| | dt ˆ 1 UL = L IdI = LI 2 2 ~0 = E ~ +V ~ ×B ~ E ~0 = B ~− 1V ~ ×E ~ B c2 ~ =E ~0 − V ~ ×B ~0 E ~ =B ~0 + 1 V ~ ×E ~0 B c2 ~0 = B ~+ 1V ~ ×E ~ B c2 ˛ ~ · d~s = µ0 I + 0 µ0 dφe B dt D(x, t) = A sin (kx − ωt + φ0 ) n= vc λmat = P I= Area β = (10 dB) log10 ~ + ~v × B) ~ F~ = q(E vem = √ 1 = 3.00 × 108 m/s = c 0 µ0 ~ + ~v × B) ~ F~ = q(E I= 1 P c0 2 = Savg = E02 = E A 2cµ0 2 0 P Intensity F = = A cA c prad = λvac n I I0 D(x,q t) = A (x) cos (ωt)where A (x) = 2a sin (kx) v = Tµs f+ = f0 1−vs /v for an approaching source f− = f0 1+vs /v for a receding force - for an observer approaching a source: Itransmitted = I0 cos2 θ f+ = (1 + v0 /v) f0 F P Intensity = = A cA c prad = - for an observer approaching a source: f− = (1 − v0 /v) f0 0 x = x + vt 0 y=y 0 z=z ∆t = √∆τ 1−β 2 0 L = p - for standing waves on a string: ( λm = 2L m v v fm = λvm = 2L/m = m 2L ≥ ∆τ 1 − β2l ≤ l 2 - for open-open or closed-closed tube: ( λm = 2L m, m = 1, 2, . . . v fm = m 2L = mf1 2 s2 = c2 (∆t) − (∆x) γ=√ m = 1, 2, . . . 1 1−v 2 /c2 =√ 1 1−β 2 0 x = γ (x − vt) y 0 = y 0 z =z 0 t = γ t − vx/c2 - for open-closed tube: 0 u = u−v 1−uv/c2 ( λm = 4L m, v fm = m 4L = mf1 m = 1, 2, . . . - for maximum constructive interference: p = γp mu E = γp mc2 = E0 + K 2 E 2 = (pc) = E02 ∆φ = 2π ∆x + ∆φ0 = m · 2π λ - for maximum destructive interference: m L µ= T= f1 ∆x ∆φ = 2π + ∆φ0 = λ v= Tλ = λf k= 2π λ ω = vk mod fbeat = 2fmod = 2 ω2π = f1 − f2 1 m+ · 2π 2 θm = m λd angles of bright fringes ym = mλL d positions of bright fringes y0 m = m + 12 λL d positions of dark fringes πd Idouble = 4I1 cos2 λL y d sinθm = mλdark fringes ym = L tanθm bright fringes θp = p λa , p = 1, 2, . . . angles of dark fringes yp = pλL a , w= 2λL a p = 1, 2, . . . position of dark fringes w = 2y1 = 2L tanθ1 ≈ θ1 = sin−1 λa 2.44λL D Constants c = 3.00 × 108 m/s µ0 = 1.26 × 10−6 T m/A ε0 = 8.85 × 10−12 C 2 /N m2 Charge Densities Q L Q η= A λ= ρ= Q V olume
© Copyright 2026 Paperzz