Problem 2.20 A 300-Ω lossless air transmission line is connected to a complex load composed of a resistor in series with an inductor, as shown in Fig. P2.20. At 5 MHz, determine: (a) Γ, (b) S, (c) location of voltage maximum nearest to the load, and (d) location of current maximum nearest to the load. R = 600 Ω Z0 = 300 Ω L = 0.02 mH Figure P2.20: Circuit for Problem 2.20. Solution: (a) ZL = R + j ω L = 600 + j2π × 5 × 106 × 2 × 10−5 = (600 + j628) Ω. ZL − Z 0 ZL + Z0 600 + j628 − 300 = 600 + j628 + 300 ◦ 300 + j628 = 0.63e j29.6 . = 900 + j628 Γ= (b) S= (c) 1 + |Γ| 1 + 0.63 = = 1.67. 1 − |Γ| 1 − 0.63 θr λ for θr > 0. 4 π µ ¶ 29.6◦ π 60 , = 180◦ 4π = 2.46 m lmax = µ ¶ 3 × 108 λ= = 60 m 5 × 106 (d) The locations of current maxima correspond to voltage minima and vice versa. Hence, the location of current maximum nearest the load is the same as location of voltage minimum nearest the load. Thus µ ¶ λ λ lmin = lmax + , lmax < = 15 m 4 4 = 2.46 + 15 = 17.46 m. Problem 2.22 Using a slotted line, the following results were obtained: distance of first minimum from the load = 4 cm; distance of second minimum from the load = 14 cm; voltage standing-wave ratio = 1.5. If the line is lossless and Z0 = 50 Ω, find the load impedance. Solution: Following Example 2.6: Given a lossless line with Z0 = 50 Ω, S = 1.5, dmin(0) = 4 cm, dmin(1) = 14 cm. Then dmin(1) − dmin(0) = λ 2 or λ = 2 × (dmin(1) − dmin(0) ) = 20 cm and β= 2π 2π rad/cycle = = 10π rad/m. λ 20 cm/cycle From this we obtain θr = 2β dmin(n) − (2n + 1)π rad = 2 × 10π rad/m × 0.04 m − π rad = −0.2π rad = −36.0◦ . Also, |Γ| = So ZL = Z0 µ 1+Γ 1−Γ ¶ = 50 S − 1 1.5 − 1 = = 0.2. S + 1 1.5 + 1 Ã 1 + 0.2e− j36.0 1 − 0.2e− j36.0 ◦! ◦ = (67.0 − j16.4) Ω. Problem 2.47 Use the Smith chart to find the reflection coefficient corresponding to a load impedance of (a) ZL = 3Z0 (b) ZL = (2 − j2)Z0 (c) ZL = − j2Z0 (d) ZL = 0 (short circuit) Solution: Refer to Fig. P2.47. ◦ (a) Point A is zL = 3 + j0. Γ = 0.5e0 ◦ (b) Point B is zL = 2 − j2. Γ = 0.62e−29.7 ◦ (c) Point C is zL = 0 − j2. Γ = 1.0e−53.1 ◦ (d) Point D is zL = 0 + j0. Γ = 1.0e180.0 -90 0.39 0.4 0.38 0.9 1.2 1.0 0.11 -100 0.12 0.13 0.35 0.14 -80 0.15 4 1.4 -70 6 0.37 0.36 1.6 0.1 0.4 1 -110 0.0 9 0.4 2 CAP -12 0.08 A 0 C ITI VE 0.4 RE 3 AC 0.0 TA 7 NC -1 EC 30 O M PO N EN T (-j 0.8 1.8 2.0 9 Figure P2.47: Solution of Problem 2.47. 0.8 0.2 C 1 0.3 0.2 0.1 1.0 3.0 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 50 20 10 5.0 4.0 1.0 1.0 5.0 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) 0.2 0.4 0.6 B 1.0 0.28 0.7 8 0.22 0.6 0. -20 0.2 0.3 3.0 10 20 50 0.6 0.1 0.4 0.2 20 10 0.25 0.26 0.24 0.27 0.23 0.25 0.24 0.26 0.23 COEFFICIENT IN 0.27 REFLECTION DEGR LE OF EES ANG 31 0. 0.3 0.2 20 19 0. 0.5 0.6 0.28 0.6 06 0. 44 0. 06 0.5 2.0 1.8 0.3 0.22 A 50 9 0. 0.2 0.3 1 44 0.6 1.6 60 0.3 0. 1.2 1.0 0.9 0.8 1.4 0.7 4 0.2 -30 4 0 -4 0.0 —> WAVELEN 0.49 GTHS TOW ARD 0.48 <— 0.0 0.49 GEN RD LOAD ERA TOWA 0.48 ± 180 THS TO G 170 0 N R— -17 E 0.47 VEL > A W 0.0 6 160 4 <— 0.4 -160 0.4 4 .0 6 0 IND Yo) UCT 0.0 / 5 15 B j 0 (IVE 5 0 0.4 -15 CE R N 0.4 E 5 AC TA 5 TA 0.0 EP 0.1 NC SC SU EC E V OM 14 0 TI 4 0 C PO -1 DU N EN IN R T (+ ,O jX o) Z /Z 0.2 X/ 0.3 0.2 -60 70 0.2 0.47 0.8 30 0.2 0.35 0. 0.2 0.1 0.36 7 80 0.1 0.13 3 0.37 0.3 D 4 0.4 31 0. 40 R ,O o) 90 0.3 0 0.38 8 0.1 0 -5 13 0.12 2 .43 ) 2 /Yo 0 0.4 12 (+jB CE AN PT CE S SU VE TI CI PA CA 19 0. 0. 8 0 0. 7 0.0 0 110 0.4 0.0 0.39 100 0.3 0.11 3.0 8 .41 0.4 4.0 0.1 5.0 9 50 0.0 0.14 0.15 0.1 6 0.3 3 7 0.1 2 0.1 8 4.0 Problem 2.59 A 75-Ω lossless line is 0.6λ long. If S = 1.8 and θr = −60◦ , use the Smith chart to find |Γ|, ZL , and Zin . 1.2 1.0 0.9 6 0.3 4 0.1 1.6 7 0.3 3 0.1 1.8 0.6 60 0.5 2 0.4 0.2 40 0.3 3.0 0.6 1 0.2 9 4.0 0.28 1.0 5.0 0.2 20 8 0. 0.25 0.26 0.24 0.27 0.23 0.25 0.24 0.26 0.23 COEFFICIENT IN 0.27 REFLECTION DEGR LE OF EES ANG 0.6 10 0.1 0.4 20 0.2 10 5.0 4.0 3.0 2.0 1.8 1.6 1.4 1.2 0.9 0.8 0.7 0.6 0.5 0.4 1.0 50 0.3 50 SWR RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) 0.2 20 0.4 0.1 Z-IN 10 Z-LOAD 0.6 8 -20 0. 1.0 0.47 5.0 1.0 4.0 0.8 9 0.6 3.0 2.0 1.8 0.2 1.6 -60 1.4 -70 1.2 6 4 0.15 0.35 0.14 -80 0.36 0.9 0.1 0.3 1.0 7 3 0.8 0.1 0.3 0.7 2 0.6 8 0.1 0 -5 θr 0.3 0.5 31 0. 0.1 0.4 1 -110 0.0 9 0.4 2 0.0 CAP -1 8 A 2 0 C ITI VE 0.4 RE 3 AC 0.0 TA 7 NC -1 EC 30 O M PO N EN T (-j 06 0.4 19 0. 0. 0.3 0 -4 44 0.2 4 0. 1 0.2 0.2 -30 0.3 0.28 0.22 0.2 0. 0.22 1.0 50 4 0. 0.3 30 0.8 0.2 0.0 —> WAVELEN 0.49 GTHS TOW ARD 0.48 <— 0.0 0.49 GEN RD LOAD ERA TOWA 0.48 ± 180 THS TO G 170 0 N R— -17 E 0.47 VEL > A W 0.0 6 160 4 <— 0.4 -160 0.4 4 .0 6 0 IND Yo) UCT 0.0 / 5 15 B j 0 (IVE 5 0 0.4 -15 CE R N 0.4 E 5 AC TA 5 TA 0.0 EP 0.1 NC SC SU EC E V OM 14 0 TI 4 0 C PO -1 DU N EN IN R T (+ ,O jX o) Z /Z 0.2 X/ 50 31 0. R ,O o) 8 0.3 2.0 0.2 20 0. 06 0.1 70 19 0. 0. 44 0.35 80 ) /Yo 0 0 12 (+jB CE AN PT CE S SU VE TI CI PA CA .42 3 0.4 0 13 0.15 0.36 90 1.4 0.0 7 0.0 110 0.14 0.37 0.38 0.7 8 0.8 1 0.4 0.39 100 0.4 9 0.0 0.13 0.12 0.11 0.1 -90 0.12 0.13 0.38 0.37 0.11 -100 0.4 0.39 0.100 λ Figure P2.59: Solution of Problem 2.59. Solution: Refer to Fig. P2.59. The SWR circle must pass through S = 1.8 at point SWR. A circle of this radius has |Γ| = S−1 = 0.29. S+1 The load must have a reflection coefficient with θr = −60◦ . The angle of the reflection coefficient is read off that scale at the point θr . The intersection of the circle of constant |Γ| and the line of constant θr is at the load, point Z-LOAD, which has a value zL = 1.15 − j0.62. Thus, ZL = zL Z0 = (1.15 − j0.62) × 75 Ω = (86.5 − j46.6) Ω. A 0.6λ line is equivalent to a 0.1λ line. On the WTG scale, Z-LOAD is at 0.333λ , so Z-IN is at 0.333λ + 0.100λ = 0.433λ and has a value zin = 0.63 − j0.29. Therefore Zin = zin Z0 = (0.63 − j0.29) × 75 Ω = (47.0 − j21.8) Ω.
© Copyright 2026 Paperzz