Recommended DOSDs, pseudospectra, and C6 coefficients Ashok Kumar and Ajit J. Thakkar Supplementary information for an article entitled Constrained dipole oscillator strength distributions for CF4 , CClF3 , CCl2 F2 , CCl3 F, CHF3 , CH3 F, CH3 Cl, CH3 Br, CH3 I, C2 F6 , and CCl3 CF3 published in Z. Phys. Chemie (2016). 1 1 Sources of pseudospectra Li, H2 , N2 , NO, N2 O, H2 O, CH4 Ref. [1] n-alkanes: n-Ck H2k+2 (2 ≤ k ≤ 8) Ref. [2] He Ref. [3] CO, CO2 Ref. [4] SO2 , CS2 , OCS Ref. [5] HF, HCl, HBr Ref. [6] SF6 Ref. [7] H Ref. [8] H2 S Ref. [9] C2 H2 , benzene Ref. [10] NH3 Ref. [11]a CCl4 Ref. [12] Cl2 Ref. [13] SiF4 Ref. [14] SiH4 Ref. [15] (CH3 )k NH3−k (k = 1, 2, 3), H2 CO, (CH3 )HCO, acetone Ref. [16] methanol, ethanol, 1-propanol Ref. [17] C2 H4 , propene, 1-butene Ref. [18] methylpropylether, ethoxyethane, dimethylether Ref. [19] Ne, Ar, Kr, Xe Ref. [20] C60 Ref. [21] O2 , O3 Ref. [22]b pyridine Ref. [23] PH3 , PF3 , PF5 , PCl3 , SiCl4 , GeCl4 , SnCl4 Ref. [24] CFk Cl4−k (k = 1, 2, 3, 4), CHF3 , CH3 X (X=F, Cl, Br, I), C2 F6 , CCl3 CF3 This work a Computed from the dipole sum rules reported in Ref. [11]. b Corresponding to DOSD-C for O3 because it has since been shown [25] to be most likely to be closer to the true distribution. 2 2 CF4 Photoabsorption data used for Energy range (eV) Intervals 6.04–9.59 1 9.59–11.6 2 11.6–25.1 7 25.1–35.9 2 35.9–40.4 2 40.4–59.9 2 59.9–68.9 1 68.9–150 3 150–200 1 200–248 1 248–296 3 296–302 1 302–336 1 336–687 2 687–711 1 711–100,000 7 100,000–∞ 1 the recommended CF4 DOSD. Source Watanabe et al. [26] Chim et al. [27] King and McConke [28] Ali [29] Lee et al. [30] Au et al. [31], low resolution Lee et al. [30] Watanabe et al. [26] Au et al. [31], low resolution Henke et al. [32] Chantler [33, 34] Simone et al. [35] Chantler [33, 34] Sivkov et al. [36] Simone et al. [35] Chantler [33, 34] Laurent expansion The constraints used were the KRT sum rule and the refractivity at 632.8 nm measured by Bulanin and Kislyakov [37]. Pseudospectrum for CF4 . Ei fi 2.331361E-01 1.605624E-03 2.620961E-01 1.242889E-02 3.206463E-01 8.790706E-02 4.298748E-01 1.653089E-01 6.156487E-01 1.972390E+00 9.255129E-01 6.271755E+00 1.666208E+00 1.034232E+01 3.911727E+00 1.202662E+01 2.586981E+01 1.058152E+01 3.402652E+02 5.381470E-01 3 Dispersion coefficients C6 (A–CF4 ) in atomic units. A C6 A C6 PH3 255.0 NH3 143.9 PF3 276.0 CH4 172.9 PF5 330.4 ethane 296.9 PCl3 637.3 propane 421.1 SiCl4 730.2 n-butane 541.3 GeCl4 774.9 n-pentane 664.0 SnCl4 847.1 n-hexane 783.0 pyridine 586.8 n-heptane 903.3 He 18.85 n-octane 1023. Ne 39.07 C2 H4 261.5 Ar 123.9 propene 388.8 Kr 174.7 1-butene 508.8 Xe 256.0 C2 H2 215.1 H 36.86 benzene 625.5 Li 304.1 methylamine 265.4 H2 52.23 dimethylamine 387.6 N2 132.6 trimethylamine 496.4 O2 121.9 methanol 228.3 Cl2 298.6 ethanol 353.6 HF 68.00 1-propanol 476.0 HCl 173.4 H2 CO 196.7 HBr 221.3 acetaldehyde 306.2 CO 139.0 acetone 430.5 CO2 195.1 methylpropylether 604.1 NO 129.5 ethoxyethane 602.8 N2 O 209.7 dimethylether 353.1 O3 198.8 SF6 375.4 SO2 263.1 SiH4 271.7 CS2 428.4 SiF4 283.6 OCS 300.2 CCl4 682.0 H2 S 218.1 C60 4751. H2 O 103.9 4 3 CClF3 Photoabsorption data used for the recommended CClF3 DOSD. Energy range (eV) Intervals Source 5.64–7.20 2 JPL [38] 7.20–10.1 4 Eden et al. [39] 10.1–59.9 10 Au et al. [31], high resolution 59.9–200 5 Au et al. [31], low resolution 200–30,000 8 Henke et al. [32] 30,000–100,000 1 Chantler [33, 34] 100,000–∞ 1 Laurent expansion The constraints used were the KRT sum rule and the refractivity at 546.227 nm from Herkt et al. [40]. Pseudospectrum for CClF3 . Ei fi 2.430043E-01 1.933931E-05 3.266402E-01 1.374994E-02 3.744280E-01 3.258974E-01 4.724490E-01 1.735436E+00 6.518167E-01 4.452108E+00 9.730265E-01 7.548527E+00 1.800170E+00 9.232214E+00 4.827133E+00 1.091517E+01 2.676064E+01 1.508585E+01 6.271422E+02 6.910223E-01 5 Dispersion coefficients C6 (A–CClF3 ) in atomic units. A C6 A C6 PH3 396.6 NH3 220.6 PF3 418.7 CH4 265.6 PF5 494.6 ethane 455.9 PCl3 984.0 propane 646.6 SiCl4 1124. n-butane 831.0 GeCl4 1195. n-pentane 1019. SnCl4 1306. n-hexane 1202. pyridine 902.7 n-heptane 1386. He 28.14 n-octane 1570. Ne 57.66 C2 H4 402.7 Ar 188.5 propene 598.5 Kr 267.1 1-butene 782.6 Xe 394.0 C2 H2 331.6 H 57.62 benzene 963.7 Li 502.3 methylamine 407.1 H2 80.63 dimethylamine 594.5 N2 201.2 trimethylamine 761.4 O2 184.1 methanol 349.0 Cl2 459.4 ethanol 541.3 HF 102.2 1-propanol 729.5 HCl 266.4 H2 CO 300.9 HBr 341.3 acetaldehyde 468.8 CO 211.8 acetone 659.3 CO2 296.0 methylpropylether 925.5 NO 196.2 ethoxyethane 924.1 N2 O 319.2 dimethylether 540.6 O3 301.2 SF6 562.2 SO2 401.8 SiH4 422.9 CS2 667.9 SiF4 425.4 OCS 463.6 CCl4 1048. H2 S 338.3 C60 7326. H2 O 158.0 6 4 CCl2F2 Photoabsorption data used for the recommended CCl2 F2 DOSD. Energy range (eV) Intervals Source 5.03–5.70 3 Au et al. [31], high resolution 5.70–7.12 3 Atkinson [41] 7.12–8.27 1 Au et al. [31], high resolution 8.27–11.0 3 Ibuki et al. [42] 11.0–16.3 3 Seccombe et al. [43] 16.3–19.5 2 Au et al. [31], low resolution 19.5–23.5 2 Jochims et al. [44] 23.5–200 10 Au et al. [31], low resolution 200–300 3 Chantler [33, 34] 300–30,000 8 Henke et al. [32] 30,000–100,000 1 Chantler [33, 34] 100,000–∞ 1 Laurent expansion The constraints used were the KRT sum rule and the refractivity at 587.72nm measured by Gault and Shepherd [45]. Pseudospectrum for CCl2 F2 . Ei fi 1.924890E-01 1.760923E-05 2.458168E-01 8.362845E-03 3.177300E-01 1.593563E-01 3.918919E-01 1.426631E+00 5.382670E-01 4.302903E+00 8.026321E-01 9.135110E+00 1.468976E+00 7.924911E+00 4.529304E+00 1.184515E+01 2.303829E+01 2.210406E+01 6.645628E+02 1.093498E+00 7 Dispersion coefficients A C6 PH3 519.5 PF3 540.5 PF5 633.0 PCl3 1283. SiCl4 1464. GeCl4 1557. SnCl4 1702. pyridine 1175. He 35.94 Ne 73.18 Ar 243.5 Kr 346.3 Xe 513.0 H 75.70 Li 685.2 H2 105.1 N2 259.7 O2 237.0 Cl2 597.7 HF 131.1 HCl 346.2 HBr 444.8 CO 273.9 CO2 382.0 NO 253.0 N2 O 412.8 O3 388.4 SO2 520.6 CS2 876.7 OCS 604.8 H2 S 442.5 H2 O 204.3 C6 (A–CCl2 F2 ) in atomic units. A C6 NH3 286.5 CH4 345.2 ethane 592.5 propane 840.4 n-butane 1080. n-pentane 1324. n-hexane 1561. n-heptane 1801. n-octane 2039. C2 H4 524.4 propene 779.1 1-butene 1018. C2 H2 432.1 benzene 1255. methylamine 528.7 dimethylamine 772.1 trimethylamine 989.1 methanol 452.4 ethanol 702.3 1-propanol 947.0 H2 CO 390.2 acetaldehyde 608.4 acetone 855.4 methylpropylether 1201. ethoxyethane 1200. dimethylether 701.5 SF6 719.9 SiH4 554.3 SiF4 545.1 CCl4 1364. C60 9551. 8 5 CCl3F Photoabsorption data used for the recommended CCl3 F DOSD. Energy range (eV) Intervals Source 4.51–5.21 2 Baulch et al. [46] 5.21–59.9 17 Au et al. [31], high resolution 59.9–200 6 Au et al. [31], low resolution 200–30,000 11 Henke et al. [32] 30,000–100,000 1 Chantler [33, 34] 100,000–∞ 1 Laurent expansion The constraints used were the KRT sum rule and the CCSD(T) static dipole polarizability from Kalugina and Thakkar [47]. Pseudospectrum for CCl3 F. Ei fi 2.041483E-01 1.771385E-04 2.397089E-01 1.550615E-02 2.946019E-01 1.195825E-01 3.782333E-01 1.820570E+00 5.231881E-01 5.739440E+00 7.702564E-01 1.019563E+01 1.364492E+00 6.619195E+00 4.986023E+00 1.220297E+01 2.281206E+01 2.785168E+01 6.953115E+02 1.435246E+00 9 Dispersion coefficients C6 (A–CCl3 F) in atomic units. A C6 A C6 PH3 643.7 NH3 353.2 PF3 663.7 CH4 425.8 PF5 773.4 ethane 730.7 PCl3 1586. propane 1036. SiCl4 1807. n-butane 1332. GeCl4 1923. n-pentane 1632. SnCl4 2103. n-hexane 1925. pyridine 1450. n-heptane 2220. He 43.85 n-octane 2515. Ne 88.92 C2 H4 647.4 Ar 299.3 propene 961.7 Kr 426.5 1-butene 1257. Xe 633.3 C2 H2 533.7 H 93.96 benzene 1550. Li 868.6 methylamine 651.8 H2 129.9 dimethylamine 951.9 N2 318.8 trimethylamine 1219. O2 290.5 methanol 557.0 Cl2 737.6 ethanol 865.1 HF 160.4 1-propanol 1167. HCl 427.0 H2 CO 480.6 HBr 549.5 acetaldehyde 749.5 CO 336.8 acetone 1054. CO2 469.1 methylpropylether 1480. NO 310.5 ethoxyethane 1479. N2 O 507.5 dimethylether 864.2 O3 476.8 SF6 879.7 SO2 640.8 SiH4 687.1 CS2 1087. SiF4 666.5 OCS 747.6 CCl4 1682. H2 S 547.7 C60 11800 H2 O 251.0 10 6 CHF3 Photoabsorption data used for the recommended CHF3 DOSD. Energy range (eV) Intervals Source 6.22–10.0 2 Ali [29] 10.0–11.5 3 Suto and Lee [48] 11.5–20.0 4 Lee et al. [49] 20.0–24.8 1 Ali [29] 24.8–68.9 3 Wu et al. [50] 68.9–280 5 Henke et al. [32] 280–310 1 Brown et al. [51] 310–3000 3 Henke et al. [32] 3000–5000 1 Chantler [33, 34] 5000–30,000 2 Henke et al. [32] 30,000–100,000 1 Chantler [33, 34] 100,000–∞ 1 Laurent expansion The constraints used were the KRT sum rule and the refractivity at 644.024 nm measured by Ramaswamy [52]. Pseudospectrum for CHF3 . Ei fi 2.334766E-01 3.819785E-03 2.580749E-01 1.080250E-02 3.148936E-01 2.531188E-02 4.455196E-01 5.029565E-01 6.127952E-01 2.101626E+00 9.170735E-01 5.419924E+00 1.651546E+00 8.339017E+00 3.915324E+00 8.473682E+00 2.473120E+01 8.674725E+00 3.284861E+02 4.481348E-01 11 Dispersion coefficients C6 (A–CHF3 ) in atomic units. A C6 A C6 PH3 243.3 NH3 136.5 PF3 260.8 CH4 164.2 PF5 310.6 ethane 281.9 PCl3 606.4 propane 399.8 SiCl4 694.1 n-butane 514.0 GeCl4 736.9 n-pentane 630.3 SnCl4 805.5 n-hexane 743.4 pyridine 557.6 n-heptane 857.5 He 17.70 n-octane 971.2 Ne 36.52 C2 H4 248.6 Ar 117.2 propene 369.5 Kr 165.6 1-butene 483.5 Xe 243.2 C2 H2 204.6 H 35.25 benzene 594.7 Li 296.8 methylamine 251.9 H2 49.70 dimethylamine 367.9 N2 125.3 trimethylamine 471.2 O2 115.0 methanol 216.4 Cl2 283.8 ethanol 335.4 HF 64.01 1-propanol 451.6 HCl 164.7 H2 CO 186.5 HBr 210.5 acetaldehyde 290.4 CO 131.6 acetone 408.4 CO2 184.4 methylpropylether 573.1 NO 122.4 ethoxyethane 572.0 N2 O 198.4 dimethylether 334.9 O3 187.7 SF6 352.9 SO2 249.3 SiH4 259.4 CS2 409.2 SiF4 266.8 OCS 285.6 CCl4 647.9 H2 S 207.9 C60 4518. H2 O 98.29 12 7 CH3F Photoabsorption data used for Energy range (eV) Intervals 7.50–8.67 3 8.67–11.5 1 11.5–250 8 250–280 1 280–310 1 310–30,000 7 30,000–100,000 1 100,000–∞ 1 the recommended CH3 F DOSD. Source Olney et al. [53], low resolution Sauvageau et al. [54] Olney et al. [53], low resolution Henke et al. [32] Brown et al. [51] Henke et al. [32] Chantler [33, 34] Laurent expansion The constraints used were the KRT sum rule and the refractivity at 632.8nm from Burns et al. [55]. Pseudospectrum for CH3 F. Ei fi 2.869940E-01 2.486809E-03 3.284116E-01 6.482708E-02 3.860108E-01 2.497726E-01 4.911305E-01 1.130787E+00 6.571742E-01 2.463926E+00 9.776829E-01 3.295451E+00 1.763828E+00 3.408094E+00 4.511705E+00 3.079219E+00 2.314730E+01 4.128742E+00 3.190224E+02 1.766935E-01 13 Dispersion coefficients C6 (A–CH3 F) in atomic units. A C6 A C6 PH3 208.3 NH3 115.2 PF3 217.7 CH4 138.8 PF5 255.7 ethane 238.3 PCl3 515.4 propane 337.9 SiCl4 588.2 n-butane 434.3 GeCl4 625.3 n-pentane 532.4 SnCl4 683.7 n-hexane 627.9 pyridine 472.1 n-heptane 724.2 He 14.53 n-octane 820.1 Ne 29.62 C2 H4 210.7 Ar 98.10 propene 313.1 Kr 139.3 1-butene 409.3 Xe 206.1 C2 H2 173.6 H 30.33 benzene 504.3 Li 270.6 methylamine 212.6 H2 42.23 dimethylamine 310.5 N2 104.6 trimethylamine 397.8 O2 95.54 methanol 182.0 Cl2 240.2 ethanol 282.5 HF 52.90 1-propanol 380.9 HCl 139.2 H2 CO 157.0 HBr 178.7 acetaldehyde 244.7 CO 110.3 acetone 344.1 CO2 153.9 methylpropylether 483.2 NO 102.0 ethoxyethane 482.6 N2 O 166.2 dimethylether 282.2 O3 156.5 SF6 290.7 SO2 209.5 SiH4 222.3 CS2 351.3 SiF4 220.1 OCS 242.8 CCl4 548.1 H2 S 177.6 C60 3836. H2 O 82.26 14 8 CH3Cl Photoabsorption data used for Energy range (eV) Intervals 3.92–5.75 2 5.75–7.12 3 7.12–8.70 2 8.70–9.81 1 9.81–21.2 6 21.2–35.0 1 35.0–68.9 2 68.9–100 2 100–250 1 250–30,000 7 30,000–100,000 1 100,000–∞ 1 the recommended CH3 Cl DOSD. Source Eden et al. [56] Atkinson [41] Felps et al. [57] Russell et al. [58] Olney et al. [59], high resolution Olney et al. [59], low resolution Wu et al. [50] Olney et al. [59], low resolution Chantler [33, 34] Henke et al. [32] Chantler [33, 34] Laurent expansion The constraints used were the KRT sum rule and the refractivity at 644.024 nm from Ramaswamy [60]. Pseudospectrum for CH3 Cl. Ei fi 1.499407E-01 4.176113E-06 1.803476E-01 3.297052E-05 2.731522E-01 3.260657E-02 3.451571E-01 4.244263E-01 4.648752E-01 2.453781E+00 6.781624E-01 5.250733E+00 1.127561E+00 3.780539E+00 4.036325E+00 3.242121E+00 1.982607E+01 1.032795E+01 6.834805E+02 4.878036E-01 15 Dispersion coefficients C6 (A–CH3 Cl) in atomic units. A C6 A C6 PH3 337.8 NH3 185.0 PF3 347.0 CH4 223.1 PF5 403.5 ethane 382.8 PCl3 831.5 propane 542.9 SiCl4 947.0 n-butane 697.6 GeCl4 1008. n-pentane 855.0 SnCl4 1102. n-hexane 1008. pyridine 759.7 n-heptane 1163. He 22.87 n-octane 1317. Ne 46.27 C2 H4 339.3 Ar 156.5 propene 504.0 Kr 223.3 1-butene 658.5 Xe 331.8 C2 H2 279.7 H 49.35 benzene 812.5 Li 459.0 methylamine 341.4 H2 68.09 dimethylamine 498.6 N2 166.7 trimethylamine 638.7 O2 151.8 methanol 291.6 Cl2 386.5 ethanol 453.0 HF 83.73 1-propanol 611.2 HCl 223.7 H2 CO 251.6 HBr 288.0 acetaldehyde 392.5 CO 176.2 acetone 551.9 CO2 245.3 methylpropylether 775.2 NO 162.3 ethoxyethane 774.5 N2 O 265.5 dimethylether 452.5 O3 249.2 SF6 458.9 SO2 335.4 SiH4 360.6 CS2 570.9 SiF4 347.8 OCS 391.9 CCl4 881.4 H2 S 287.3 C60 6184. H2 O 131.3 16 9 CH3Br Photoabsorption data used for Energy range (eV) Intervals 4.28–6.0 3 6.0–7.13 3 7.13–9.36 1 9.36–12.0 3 12.0–24.8 4 24.8–49.9 2 49.9–200 5 200–30,000 13 30,000–100,000 1 100,000–∞ 1 the recommended CH3 Br DOSD. Source JPL [38] Locht et al. [61], high resolution Olney et al. [62], high resolution Locht et al. [61], high resolution Olney et al. [62], low resolution Olney et al. [62], high resolution Olney et al. [62], low resolution Henke et al. [32] Chantler [33, 34] Laurent expansion The constraints used were the KRT sum rule and the refractivities at 644.024 nm and 435.956 nm measured by Ramaswamy [60]. Pseudospectrum for CH3 Br. Ei fi 1.879383E-01 2.134384E-04 2.211541E-01 1.265187E-02 2.638826E-01 1.270151E-01 3.476953E-01 7.952506E-01 4.779859E-01 3.097974E+00 6.978493E-01 5.640592E+00 1.199241E+00 3.798135E+00 5.443157E+00 9.412638E+00 3.263917E+01 2.022635E+01 2.163751E+03 8.891737E-01 17 Dispersion coefficients A C6 PH3 402.7 PF3 412.1 PF5 477.9 PCl3 989.9 SiCl4 1127. GeCl4 1200. SnCl4 1312. pyridine 904.0 He 27.06 Ne 54.72 Ar 185.8 Kr 265.3 Xe 395.0 H 58.88 Li 558.0 H2 81.01 N2 197.8 O2 180.0 Cl2 459.7 HF 99.26 HCl 266.0 HBr 342.8 CO 209.3 CO2 291.2 NO 192.6 N2 O 315.3 O3 295.9 SO2 398.6 CS2 681.4 OCS 466.8 H2 S 342.3 H2 O 155.9 C6 (A–CH3 Br) in atomic units. A C6 NH3 219.9 CH4 265.2 ethane 455.1 propane 645.5 n-butane 829.4 n-pentane 1016. n-hexane 1199. n-heptane 1383. n-octane 1566. C2 H4 403.7 propene 599.6 1-butene 783.4 C2 H2 332.9 benzene 967.0 methylamine 405.8 dimethylamine 592.7 trimethylamine 759.3 methanol 346.4 ethanol 538.3 1-propanol 726.5 H2 CO 299.1 acetaldehyde 466.5 acetone 655.9 methylpropylether 921.3 ethoxyethane 920.6 dimethylether 537.8 SF6 543.8 SiH4 430.0 SiF4 412.1 CCl4 1048. C60 7366. 18 10 CH3I Photoabsorption data used for the recommended CH3 I DOSD. Energy range (eV) Intervals Source 3.40–5.90 5 JPL [38] 5.90–7.75 3 Olney et al. [63], high resolution 7.75–250 20 Olney et al. [63], low resolution 250–100,000 18 Chantler [33, 34] 100,000–∞ 1 Laurent expansion The constraints used were the KRT sum rule and the refractivity at 667.81 nm measured by Joshi [64]. Pseudospectrum for CH3 I. Ei fi 1.486614E-01 7.655995E-05 1.713966E-01 4.625234E-03 2.280529E-01 9.820133E-02 2.898656E-01 7.095045E-01 3.932091E-01 2.675240E+00 5.852265E-01 5.466229E+00 1.034525E+00 4.244814E+00 3.510982E+00 1.551736E+01 3.964280E+01 3.206680E+01 3.816207E+03 1.217155E+00 19 Dispersion coefficients C6 (A–CH3 I) in atomic units. A C6 A C6 PH3 505.3 NH3 274.5 PF3 513.1 CH4 331.0 PF5 591.9 ethane 568.0 PCl3 1239. propane 805.6 SiCl4 1408. n-butane 1035. GeCl4 1501. n-pentane 1268. SnCl4 1643. n-hexane 1496. pyridine 1130. n-heptane 1725. He 33.45 n-octane 1954. Ne 67.56 C2 H4 504.8 Ar 231.0 propene 749.4 Kr 330.8 1-butene 978.8 Xe 494.2 C2 H2 416.4 H 74.00 benzene 1210. Li 729.5 methylamine 506.4 H2 101.2 dimethylamine 739.6 N2 246.0 trimethylamine 947.6 O2 223.7 methanol 431.8 Cl2 574.1 ethanol 671.2 HF 123.1 1-propanol 906.3 HCl 332.0 H2 CO 373.0 HBr 429.0 acetaldehyde 581.9 CO 260.7 acetone 818.1 CO2 362.2 methylpropylether 1149. NO 239.5 ethoxyethane 1148. N2 O 392.8 dimethylether 670.7 O3 368.3 SF6 674.0 SO2 497.0 SiH4 539.8 CS2 857.3 SiF4 510.7 OCS 584.9 CCl4 1309. H2 S 429.1 C60 9228. H2 O 194.1 20 11 C2F6 Photoabsorption data used for the recommended C2 F6 DOSD. Energy range (eV) Intervals Source 10.1–19.5 4 Robin [65] 19.5–35.0 5 Lee et al. [30] 35.0–293 13 Henke et al. [32] 293–328 1 Ishii et al. [66] 328–683 3 Henke et al. [32] 683-728 1 Ishii et al. [66] 728–30,000 5 Henke et al. [32] 30,000–100,000 1 Chantler [33, 34] 100,000–∞ 1 Laurent expansion The constraints used were the KRT sum rule and the refractivities at 587.720 nm and 447.270 nm from Gault and Shepherd [45]. Pseudospectrum for C2 F6 . Ei fi 3.801138E-01 2.551149E-02 4.284612E-01 2.313257E-01 5.069878E-01 1.136026E+00 6.362087E-01 3.285385E+00 8.588452E-01 6.492286E+00 1.327969E+00 1.120864E+01 2.347378E+00 1.563600E+01 5.562051E+00 1.244701E+01 3.168900E+01 1.495543E+01 3.998430E+02 5.823966E-01 21 Dispersion coefficients C6 (A–C2 F6 ) in atomic units. A C6 A C6 PH3 431.1 NH3 242.7 PF3 464.6 CH4 291.7 PF5 555.0 ethane 501.0 PCl3 1076. propane 710.5 SiCl4 1233. n-butane 913.3 GeCl4 1308. n-pentane 1120. SnCl4 1430. n-hexane 1321. pyridine 990.3 n-heptane 1524. He 31.65 n-octane 1726. Ne 65.46 C2 H4 441.4 Ar 208.7 propene 656.2 Kr 294.6 1-butene 858.7 Xe 432.0 C2 H2 363.2 H 62.38 benzene 1056. Li 517.7 methylamine 447.8 H2 88.22 dimethylamine 653.8 N2 223.3 trimethylamine 837.4 O2 205.1 methanol 384.9 Cl2 504.0 ethanol 596.4 HF 114.3 1-propanol 802.8 HCl 292.7 H2 CO 331.6 HBr 373.7 acetaldehyde 516.3 CO 234.2 acetone 726.1 CO2 328.5 methylpropylether 1019. NO 218.0 ethoxyethane 1017. N2 O 353.2 dimethylether 595.5 O3 334.6 SF6 630.6 SO2 443.5 SiH4 459.5 CS2 724.5 SiF4 476.6 OCS 506.9 CCl4 1151. H2 S 368.7 C60 8020. H2 O 175.0 22 12 CCl3CF3 Photoabsorption data used for the recommended CCl3 CF3 DOSD. Energy range (eV) Intervals Source 4.96–5.39 1 JPL [38] 5.39–6.70 3 Simon et al. [67] 6.70–11.6 4 Doucet et al. [68] 11.6–31.0 7 Lee et al. [69] 31.0–200 12 Henke et al. [32] 200–325 5 Chantler [33, 34] 325–30,000 14 Henke et al. [32] 30,000–100,000 1 Chantler [33, 34] 100,000–∞ 1 Laurent expansion The constraints used were the KRT sum rule and the MP2 static dipole polarizability from Thakkar and Wu [70]. Pseudospectrum for CCl3 CF3 . Ei fi 2.238423E-01 5.758244E-04 2.575096E-01 1.976723E-02 3.280992E-01 4.808014E-01 3.978095E-01 2.345719E+00 5.623240E-01 7.532003E+00 8.373685E-01 1.350018E+01 1.556018E+00 1.224096E+01 4.708013E+00 1.888932E+01 2.351877E+01 3.336535E+01 6.680366E+02 1.625319E+00 23 Dispersion coefficients A C6 PH3 801.5 PF3 833.7 PF5 976.3 PCl3 1980. SiCl4 2258. GeCl4 2402. SnCl4 2626. pyridine 1812. He 55.42 Ne 112.9 Ar 375.6 Kr 534.2 Xe 791.4 H 116.8 Li 1060. H2 162.1 N2 400.5 O2 365.5 Cl2 921.9 HF 202.2 HCl 534.1 HBr 686.2 CO 422.5 CO2 589.3 NO 390.2 N2 O 636.7 O3 599.1 SO2 803.0 CS2 1353. OCS 933.1 H2 S 682.7 H2 O 315.1 C6 (A–CCl3 CF3 ) in atomic units. A C6 NH3 442.0 CH4 532.5 ethane 914.0 propane 1296. n-butane 1666. n-pentane 2042. n-hexane 2408. n-heptane 2778. n-octane 3146. C2 H4 808.9 propene 1202. 1-butene 1571. C2 H2 666.6 benzene 1937. methylamine 815.6 dimethylamine 1191. trimethylamine 1526. methanol 697.7 ethanol 1083. 1-propanol 1461. H2 CO 601.9 acetaldehyde 938.4 acetone 1320. methylpropylether 1853. ethoxyethane 1851. dimethylether 1082. SF6 1110. SiH4 855.3 SiF4 840.7 CCl4 2103. C60 14740 24 References [1] D. J. Margoliash, W. J. Meath. J. Chem. Phys. 68 (1978) 1426. [2] B. L. Jhanwar, W. J. Meath. Mol. Phys. 41 (1980) 1061. [3] A. J. Thakkar. J. Chem. Phys. 75 (1981) 4496. [4] B. L. Jhanwar, W. J. Meath. Chem. Phys. 67 (1982) 185. [5] A. Kumar, W. J. Meath. Chem. Phys. 91 (1984) 411. [6] A. Kumar, W. J. Meath. Mol. Phys. 54 (1985) 823. [7] A. Kumar, G. R. G. Fairley, W. J. Meath. J. Chem. Phys. 83 (1985) 70. [8] A. J. Thakkar. J. Chem. Phys. 89 (1988) 2092. [9] R. J. Pazur, A. Kumar, R. A. Thuraisingham, W. J. Meath. Can. J. Chem. 66 (1988) 615. [10] A. Kumar, W. J. Meath. Mol. Phys. 75 (1992) 311. [11] G. R. Burton, W. F. Chan, G. Cooper, C. E. Brion, A. Kumar, W. J. Meath. Can. J. Chem. 71 (1993) 341. [12] A. Kumar. J. Mol. Struct. (Theochem) 591 (2002) 91. [13] M. Kumar, A. Kumar, W. J. Meath. Mol. Phys. 100 (2002) 3271. [14] A. Kumar, M. Kumar, W. J. Meath. Mol. Phys. 101 (2003) 1535. [15] A. Kumar, M. Kumar, W. J. Meath. Chem. Phys. 286 (2003) 227. [16] A. Kumar, W. J. Meath. J. Comput. Meth. Sci. Eng. 4 (2004) 307. [17] A. Kumar, B. L. Jhanwar, W. J. Meath. Collect. Czech. Chem. Commun. 70 (2005) 1196. [18] A. Kumar, B. L. Jhanwar, W. Meath. Can. J. Chem. 85 (2007) 724. [19] A. Kumar, W. J. Meath. Mol. Phys. 106 (2008) 1531. 25 [20] A. Kumar, A. J. Thakkar. J. Chem. Phys. 132 (2010) 074301. [21] A. Kumar, A. J. Thakkar. Chem. Phys. Lett. 516 (2011) 208. [22] A. Kumar, A. J. Thakkar. J. Chem. Phys. 135 (2011) 074303. [23] A. J. Thakkar. Z. Phys. Chemie 230 (2016) in press. URL http://dx. doi.org/10.1515/zpch-2015-0693. [24] A. Kumar, A. J. Thakkar. Mol. Phys. 115 (2016) in press. URL http: //dx.doi.org/10.1080/00268976.2016.1143568. [25] Y. N. Kalugina, A. J. Thakkar. Mol. Phys. 113 (2015) 2939. [26] N. Watanabe, D. Suzuki, M. Takahasi. J. Chem. Phys. 134 (2011) 064307. [27] R. Y. L. Chim, R. A. Kennedy, R. P. Tuckett. Chem. Phys. Lett. 367 (2003) 697. [28] G. C. King, J. W. McConkey. J. Phys. B: At. Molec. Phys. 11 (1978) 1861. [29] S. Ali. Gas phase vacuum-ultraviolet (VUV) spectroscopy of small halogenated polyatomic molecules. Ph.D. thesis, University of Birmingham (2007). [30] L. C. Lee, E. Phillips, D. L. Judge. J. Chem. Phys. 67 (1977) 1237. [31] J. W. Au, G. R. Burton, C. E. Brion. Chem. Phys. 221 (1997) 151. [32] B. L. Henke, E. M. Gullikson, J. C. Davis. At. Data Nucl. Data Tables 54 (1993) 181. [33] C. T. Chantler. J. Phys. Chem. Ref. Data 24 (1995) 71. [34] C. T. Chantler. J. Phys. Chem. Ref. Data 29 (2000) 597. [35] M. de Simone, M. Coreno, M. Alagia, R. Richter, K. C. Prince. J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 61. [36] V. N. Sivkov, V. N. Akimov, A. S. Vinogradov, T. M. Zimkina. Opt. Spektrosk. 60 (1986) 318. 26 [37] M. O. Bulanin, I. M. Kislyakov. Opt. Spectrosc. 93 (2002) 31. [38] Chemical kinetics and photochemical data for use in atmospheric studies. JPL publication 10-6, Jet Propulsion laboratory, California Institute of Technology, Pasadena, CA (2011). [39] S. Eden, P. Limão-Vieira, S. V. Hoffmann, N. J. Mason. Chem. Phys. 323 (2006) 313. [40] W. Herkt, G. Müller, R. Winkler. Optica Acta 22 (1975) 667. [41] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, M. J. Wallington. Atmos. Chem. Phys. 8 (2008) 4141. [42] T. Ibuki, A. Hiraya, K. Shobatake. J. Chem. Phys. 90 (1989) 6290. [43] D. P. Seccombe, R. Y. L. Chim, R. P. Tuckett, H. W. Jochims, H. Baumgärtel. J. Chem. Phys. 114 (2001) 4058. [44] H. W. Jochims, W. Lohr, H. Baumgärtel. Ber. Bunsen-Ges. 80 (1976) 130. [45] W. A. Gault, G. G. Shepherd. Appl. Opt. 12 (1973) 1739. [46] D. L. Baulch, R. A. Cox, J. Hampson, R. F., J. A. Kerr, J. Troe, R. T. Watson. J. Phys. Chem. Ref. Data 9 (1980) 295. [47] Y. Kalugina, A. J. Thakkar. Chem. Phys. Lett. 644 (2016) 20. [48] M. Suto, L. C. Lee. J. Chem. Phys. 79 (1983) 1127. [49] L. C. Lee, J. C. Han, C. Ye, M. Suto. J. Chem. Phys. 92 (1990) 133. [50] C. Y. R. Wu, L. C. Lee, D. L. Judge. J. Chem. Phys. 71 (1979) 5221. [51] F. C. Brown, R. Z. Bachrach, A. Bianconi. Chem. Phys. Lett. 54 (1978) 425. [52] K. L. Ramaswamy. Proc. Ind. Acad. Sci. A 2 (1935) 630. [53] T. N. Olney, G. Cooper, W. F. Chan, G. R. Burton, C. E. Brion, K. H. Tan. Chem. Phys. 189 (1994) 733. 27 [54] P. Sauvageau, R. Gilbert, P. P. Berlow, C. Sandorfy. J. Chem. Phys. 59 (1973) 762. [55] R. C. Burns, C. Graham, A. R. M. Weller. Mol. Phys 59 (1986) 41. [56] S. Eden, P. Limão-Vieira, S. V. Hoffmann, N. J. Mason. Chem. Phys. 331 (2007) 232. [57] W. S. Felps, K. Rupnik, S. P. McGlynn. J. Phys. Chem. 95 (1991) 639. [58] B. R. Russell, L. O. Edwards, J. W. Raymonda. J. Am. Chem. Soc. 95 (1973) 2129. [59] T. N. Olney, G. Cooper, W. F. Chan, G. R. Burton, C. E. Brion, K. H. Tan. Chem. Phys. 205 (1996) 421. [60] K. L. Ramaswamy. Proc. Ind. Acad. Sci. A 4 (1936) 675. [61] R. Locht, B. Leyh, D. Dehareng, H. W. Jochims, H. Baumgärtel. Chem. Phys. 317 (2005) 87. [62] T. N. Olney, G. Cooper, W. F. Chan, G. R. Burton, C. E. Brion, K. H. Tan. Chem. Phys. 218 (1997) 127. [63] T. N. Olney, G. Cooper, C. E. Brion. Chem. Phys. 232 (1998) 211. [64] R. V. Joshi. J. Maharaja Sayajirao Univ. Baroda 9 (1960) 27. [65] M. B. Robin. Higher excited states of polyatomic molecules, volume I. Academic, New York (1974). [66] I. Ishii, R. McLaren, A. P. Hitchcock, K. D. Jordan, Y. Choi, M. B. Robin. Can. J. Chem. 66 (1988) 2104. [67] P. C. Simon, D. Gillotay, N. Vanlaethem-Meurée, J. Wisemberg. Ann. Geophys. 6 (1988) 239. [68] J. Doucet, P. Sauvageau, C. Sandorfy. J. Chem. Phys. 62 (1975) 355. [69] M. S. Lee, M. Park, Y. Chung. J. Korean Phys. Soc. 42 (2003) 493. [70] A. J. Thakkar, T. Wu. J. Chem. Phys. 143 (2015) 144302. 28
© Copyright 2026 Paperzz