Recommended DOSDs, pseudospectra, and C6

Recommended DOSDs, pseudospectra, and
C6 coefficients
Ashok Kumar and Ajit J. Thakkar
Supplementary information for an article entitled
Constrained dipole oscillator strength distributions for
CF4 , CClF3 , CCl2 F2 , CCl3 F, CHF3 , CH3 F, CH3 Cl,
CH3 Br, CH3 I, C2 F6 , and CCl3 CF3
published in Z. Phys. Chemie (2016).
1
1
Sources of pseudospectra
Li, H2 , N2 , NO, N2 O, H2 O, CH4
Ref. [1]
n-alkanes: n-Ck H2k+2 (2 ≤ k ≤ 8)
Ref. [2]
He
Ref. [3]
CO, CO2
Ref. [4]
SO2 , CS2 , OCS
Ref. [5]
HF, HCl, HBr
Ref. [6]
SF6
Ref. [7]
H
Ref. [8]
H2 S
Ref. [9]
C2 H2 , benzene
Ref. [10]
NH3
Ref. [11]a
CCl4
Ref. [12]
Cl2
Ref. [13]
SiF4
Ref. [14]
SiH4
Ref. [15]
(CH3 )k NH3−k (k = 1, 2, 3), H2 CO, (CH3 )HCO, acetone
Ref. [16]
methanol, ethanol, 1-propanol
Ref. [17]
C2 H4 , propene, 1-butene
Ref. [18]
methylpropylether, ethoxyethane, dimethylether
Ref. [19]
Ne, Ar, Kr, Xe
Ref. [20]
C60
Ref. [21]
O2 , O3
Ref. [22]b
pyridine
Ref. [23]
PH3 , PF3 , PF5 , PCl3 , SiCl4 , GeCl4 , SnCl4
Ref. [24]
CFk Cl4−k (k = 1, 2, 3, 4), CHF3 , CH3 X (X=F, Cl, Br, I), C2 F6 , CCl3 CF3 This work
a
Computed from the dipole sum rules reported in Ref. [11].
b
Corresponding to DOSD-C for O3 because it has since been shown [25] to
be most likely to be closer to the true distribution.
2
2
CF4
Photoabsorption data used for
Energy range (eV) Intervals
6.04–9.59
1
9.59–11.6
2
11.6–25.1
7
25.1–35.9
2
35.9–40.4
2
40.4–59.9
2
59.9–68.9
1
68.9–150
3
150–200
1
200–248
1
248–296
3
296–302
1
302–336
1
336–687
2
687–711
1
711–100,000
7
100,000–∞
1
the recommended CF4 DOSD.
Source
Watanabe et al. [26]
Chim et al. [27]
King and McConke [28]
Ali [29]
Lee et al. [30]
Au et al. [31], low resolution
Lee et al. [30]
Watanabe et al. [26]
Au et al. [31], low resolution
Henke et al. [32]
Chantler [33, 34]
Simone et al. [35]
Chantler [33, 34]
Sivkov et al. [36]
Simone et al. [35]
Chantler [33, 34]
Laurent expansion
The constraints used were the KRT sum rule and the refractivity at 632.8
nm measured by Bulanin and Kislyakov [37].
Pseudospectrum for CF4 .
Ei
fi
2.331361E-01 1.605624E-03
2.620961E-01 1.242889E-02
3.206463E-01 8.790706E-02
4.298748E-01 1.653089E-01
6.156487E-01 1.972390E+00
9.255129E-01 6.271755E+00
1.666208E+00 1.034232E+01
3.911727E+00 1.202662E+01
2.586981E+01 1.058152E+01
3.402652E+02 5.381470E-01
3
Dispersion coefficients C6 (A–CF4 ) in atomic units.
A
C6 A
C6
PH3
255.0 NH3
143.9
PF3
276.0 CH4
172.9
PF5
330.4 ethane
296.9
PCl3
637.3 propane
421.1
SiCl4
730.2 n-butane
541.3
GeCl4
774.9 n-pentane
664.0
SnCl4
847.1 n-hexane
783.0
pyridine 586.8 n-heptane
903.3
He
18.85 n-octane
1023.
Ne
39.07 C2 H4
261.5
Ar
123.9 propene
388.8
Kr
174.7 1-butene
508.8
Xe
256.0 C2 H2
215.1
H
36.86 benzene
625.5
Li
304.1 methylamine
265.4
H2
52.23 dimethylamine
387.6
N2
132.6 trimethylamine
496.4
O2
121.9 methanol
228.3
Cl2
298.6 ethanol
353.6
HF
68.00 1-propanol
476.0
HCl
173.4 H2 CO
196.7
HBr
221.3 acetaldehyde
306.2
CO
139.0 acetone
430.5
CO2
195.1 methylpropylether 604.1
NO
129.5 ethoxyethane
602.8
N2 O
209.7 dimethylether
353.1
O3
198.8 SF6
375.4
SO2
263.1 SiH4
271.7
CS2
428.4 SiF4
283.6
OCS
300.2 CCl4
682.0
H2 S
218.1 C60
4751.
H2 O
103.9
4
3
CClF3
Photoabsorption data used for the recommended CClF3 DOSD.
Energy range (eV) Intervals Source
5.64–7.20
2 JPL [38]
7.20–10.1
4 Eden et al. [39]
10.1–59.9
10 Au et al. [31], high resolution
59.9–200
5 Au et al. [31], low resolution
200–30,000
8 Henke et al. [32]
30,000–100,000
1 Chantler [33, 34]
100,000–∞
1 Laurent expansion
The constraints used were the KRT sum rule and the refractivity at
546.227 nm from Herkt et al. [40].
Pseudospectrum for CClF3 .
Ei
fi
2.430043E-01 1.933931E-05
3.266402E-01 1.374994E-02
3.744280E-01 3.258974E-01
4.724490E-01 1.735436E+00
6.518167E-01 4.452108E+00
9.730265E-01 7.548527E+00
1.800170E+00 9.232214E+00
4.827133E+00 1.091517E+01
2.676064E+01 1.508585E+01
6.271422E+02 6.910223E-01
5
Dispersion coefficients C6 (A–CClF3 ) in atomic units.
A
C6 A
C6
PH3
396.6 NH3
220.6
PF3
418.7 CH4
265.6
PF5
494.6 ethane
455.9
PCl3
984.0 propane
646.6
SiCl4
1124. n-butane
831.0
GeCl4
1195. n-pentane
1019.
SnCl4
1306. n-hexane
1202.
pyridine 902.7 n-heptane
1386.
He
28.14 n-octane
1570.
Ne
57.66 C2 H4
402.7
Ar
188.5 propene
598.5
Kr
267.1 1-butene
782.6
Xe
394.0 C2 H2
331.6
H
57.62 benzene
963.7
Li
502.3 methylamine
407.1
H2
80.63 dimethylamine
594.5
N2
201.2 trimethylamine
761.4
O2
184.1 methanol
349.0
Cl2
459.4 ethanol
541.3
HF
102.2 1-propanol
729.5
HCl
266.4 H2 CO
300.9
HBr
341.3 acetaldehyde
468.8
CO
211.8 acetone
659.3
CO2
296.0 methylpropylether 925.5
NO
196.2 ethoxyethane
924.1
N2 O
319.2 dimethylether
540.6
O3
301.2 SF6
562.2
SO2
401.8 SiH4
422.9
CS2
667.9 SiF4
425.4
OCS
463.6 CCl4
1048.
H2 S
338.3 C60
7326.
H2 O
158.0
6
4
CCl2F2
Photoabsorption data used for the recommended CCl2 F2 DOSD.
Energy range (eV) Intervals Source
5.03–5.70
3 Au et al. [31], high resolution
5.70–7.12
3 Atkinson [41]
7.12–8.27
1 Au et al. [31], high resolution
8.27–11.0
3 Ibuki et al. [42]
11.0–16.3
3 Seccombe et al. [43]
16.3–19.5
2 Au et al. [31], low resolution
19.5–23.5
2 Jochims et al. [44]
23.5–200
10 Au et al. [31], low resolution
200–300
3 Chantler [33, 34]
300–30,000
8 Henke et al. [32]
30,000–100,000
1 Chantler [33, 34]
100,000–∞
1 Laurent expansion
The constraints used were the KRT sum rule and the refractivity at
587.72nm measured by Gault and Shepherd [45].
Pseudospectrum for CCl2 F2 .
Ei
fi
1.924890E-01 1.760923E-05
2.458168E-01 8.362845E-03
3.177300E-01 1.593563E-01
3.918919E-01 1.426631E+00
5.382670E-01 4.302903E+00
8.026321E-01 9.135110E+00
1.468976E+00 7.924911E+00
4.529304E+00 1.184515E+01
2.303829E+01 2.210406E+01
6.645628E+02 1.093498E+00
7
Dispersion coefficients
A
C6
PH3
519.5
PF3
540.5
PF5
633.0
PCl3
1283.
SiCl4
1464.
GeCl4
1557.
SnCl4
1702.
pyridine 1175.
He
35.94
Ne
73.18
Ar
243.5
Kr
346.3
Xe
513.0
H
75.70
Li
685.2
H2
105.1
N2
259.7
O2
237.0
Cl2
597.7
HF
131.1
HCl
346.2
HBr
444.8
CO
273.9
CO2
382.0
NO
253.0
N2 O
412.8
O3
388.4
SO2
520.6
CS2
876.7
OCS
604.8
H2 S
442.5
H2 O
204.3
C6 (A–CCl2 F2 ) in atomic units.
A
C6
NH3
286.5
CH4
345.2
ethane
592.5
propane
840.4
n-butane
1080.
n-pentane
1324.
n-hexane
1561.
n-heptane
1801.
n-octane
2039.
C2 H4
524.4
propene
779.1
1-butene
1018.
C2 H2
432.1
benzene
1255.
methylamine
528.7
dimethylamine
772.1
trimethylamine
989.1
methanol
452.4
ethanol
702.3
1-propanol
947.0
H2 CO
390.2
acetaldehyde
608.4
acetone
855.4
methylpropylether 1201.
ethoxyethane
1200.
dimethylether
701.5
SF6
719.9
SiH4
554.3
SiF4
545.1
CCl4
1364.
C60
9551.
8
5
CCl3F
Photoabsorption data used for the recommended CCl3 F DOSD.
Energy range (eV) Intervals Source
4.51–5.21
2 Baulch et al. [46]
5.21–59.9
17 Au et al. [31], high resolution
59.9–200
6 Au et al. [31], low resolution
200–30,000
11 Henke et al. [32]
30,000–100,000
1 Chantler [33, 34]
100,000–∞
1 Laurent expansion
The constraints used were the KRT sum rule and the CCSD(T) static
dipole polarizability from Kalugina and Thakkar [47].
Pseudospectrum for CCl3 F.
Ei
fi
2.041483E-01 1.771385E-04
2.397089E-01 1.550615E-02
2.946019E-01 1.195825E-01
3.782333E-01 1.820570E+00
5.231881E-01 5.739440E+00
7.702564E-01 1.019563E+01
1.364492E+00 6.619195E+00
4.986023E+00 1.220297E+01
2.281206E+01 2.785168E+01
6.953115E+02 1.435246E+00
9
Dispersion coefficients C6 (A–CCl3 F) in atomic units.
A
C6 A
C6
PH3
643.7 NH3
353.2
PF3
663.7 CH4
425.8
PF5
773.4 ethane
730.7
PCl3
1586. propane
1036.
SiCl4
1807. n-butane
1332.
GeCl4
1923. n-pentane
1632.
SnCl4
2103. n-hexane
1925.
pyridine 1450. n-heptane
2220.
He
43.85 n-octane
2515.
Ne
88.92 C2 H4
647.4
Ar
299.3 propene
961.7
Kr
426.5 1-butene
1257.
Xe
633.3 C2 H2
533.7
H
93.96 benzene
1550.
Li
868.6 methylamine
651.8
H2
129.9 dimethylamine
951.9
N2
318.8 trimethylamine
1219.
O2
290.5 methanol
557.0
Cl2
737.6 ethanol
865.1
HF
160.4 1-propanol
1167.
HCl
427.0 H2 CO
480.6
HBr
549.5 acetaldehyde
749.5
CO
336.8 acetone
1054.
CO2
469.1 methylpropylether 1480.
NO
310.5 ethoxyethane
1479.
N2 O
507.5 dimethylether
864.2
O3
476.8 SF6
879.7
SO2
640.8 SiH4
687.1
CS2
1087. SiF4
666.5
OCS
747.6 CCl4
1682.
H2 S
547.7 C60
11800
H2 O
251.0
10
6
CHF3
Photoabsorption data used for the recommended CHF3 DOSD.
Energy range (eV) Intervals Source
6.22–10.0
2 Ali [29]
10.0–11.5
3 Suto and Lee [48]
11.5–20.0
4 Lee et al. [49]
20.0–24.8
1 Ali [29]
24.8–68.9
3 Wu et al. [50]
68.9–280
5 Henke et al. [32]
280–310
1 Brown et al. [51]
310–3000
3 Henke et al. [32]
3000–5000
1 Chantler [33, 34]
5000–30,000
2 Henke et al. [32]
30,000–100,000
1 Chantler [33, 34]
100,000–∞
1 Laurent expansion
The constraints used were the KRT sum rule and the refractivity at
644.024 nm measured by Ramaswamy [52].
Pseudospectrum for CHF3 .
Ei
fi
2.334766E-01 3.819785E-03
2.580749E-01 1.080250E-02
3.148936E-01 2.531188E-02
4.455196E-01 5.029565E-01
6.127952E-01 2.101626E+00
9.170735E-01 5.419924E+00
1.651546E+00 8.339017E+00
3.915324E+00 8.473682E+00
2.473120E+01 8.674725E+00
3.284861E+02 4.481348E-01
11
Dispersion coefficients C6 (A–CHF3 ) in atomic units.
A
C6 A
C6
PH3
243.3 NH3
136.5
PF3
260.8 CH4
164.2
PF5
310.6 ethane
281.9
PCl3
606.4 propane
399.8
SiCl4
694.1 n-butane
514.0
GeCl4
736.9 n-pentane
630.3
SnCl4
805.5 n-hexane
743.4
pyridine 557.6 n-heptane
857.5
He
17.70 n-octane
971.2
Ne
36.52 C2 H4
248.6
Ar
117.2 propene
369.5
Kr
165.6 1-butene
483.5
Xe
243.2 C2 H2
204.6
H
35.25 benzene
594.7
Li
296.8 methylamine
251.9
H2
49.70 dimethylamine
367.9
N2
125.3 trimethylamine
471.2
O2
115.0 methanol
216.4
Cl2
283.8 ethanol
335.4
HF
64.01 1-propanol
451.6
HCl
164.7 H2 CO
186.5
HBr
210.5 acetaldehyde
290.4
CO
131.6 acetone
408.4
CO2
184.4 methylpropylether 573.1
NO
122.4 ethoxyethane
572.0
N2 O
198.4 dimethylether
334.9
O3
187.7 SF6
352.9
SO2
249.3 SiH4
259.4
CS2
409.2 SiF4
266.8
OCS
285.6 CCl4
647.9
H2 S
207.9 C60
4518.
H2 O
98.29
12
7
CH3F
Photoabsorption data used for
Energy range (eV) Intervals
7.50–8.67
3
8.67–11.5
1
11.5–250
8
250–280
1
280–310
1
310–30,000
7
30,000–100,000
1
100,000–∞
1
the recommended CH3 F DOSD.
Source
Olney et al. [53], low resolution
Sauvageau et al. [54]
Olney et al. [53], low resolution
Henke et al. [32]
Brown et al. [51]
Henke et al. [32]
Chantler [33, 34]
Laurent expansion
The constraints used were the KRT sum rule and the refractivity at
632.8nm from Burns et al. [55].
Pseudospectrum for CH3 F.
Ei
fi
2.869940E-01 2.486809E-03
3.284116E-01 6.482708E-02
3.860108E-01 2.497726E-01
4.911305E-01 1.130787E+00
6.571742E-01 2.463926E+00
9.776829E-01 3.295451E+00
1.763828E+00 3.408094E+00
4.511705E+00 3.079219E+00
2.314730E+01 4.128742E+00
3.190224E+02 1.766935E-01
13
Dispersion coefficients C6 (A–CH3 F) in atomic units.
A
C6 A
C6
PH3
208.3 NH3
115.2
PF3
217.7 CH4
138.8
PF5
255.7 ethane
238.3
PCl3
515.4 propane
337.9
SiCl4
588.2 n-butane
434.3
GeCl4
625.3 n-pentane
532.4
SnCl4
683.7 n-hexane
627.9
pyridine 472.1 n-heptane
724.2
He
14.53 n-octane
820.1
Ne
29.62 C2 H4
210.7
Ar
98.10 propene
313.1
Kr
139.3 1-butene
409.3
Xe
206.1 C2 H2
173.6
H
30.33 benzene
504.3
Li
270.6 methylamine
212.6
H2
42.23 dimethylamine
310.5
N2
104.6 trimethylamine
397.8
O2
95.54 methanol
182.0
Cl2
240.2 ethanol
282.5
HF
52.90 1-propanol
380.9
HCl
139.2 H2 CO
157.0
HBr
178.7 acetaldehyde
244.7
CO
110.3 acetone
344.1
CO2
153.9 methylpropylether 483.2
NO
102.0 ethoxyethane
482.6
N2 O
166.2 dimethylether
282.2
O3
156.5 SF6
290.7
SO2
209.5 SiH4
222.3
CS2
351.3 SiF4
220.1
OCS
242.8 CCl4
548.1
H2 S
177.6 C60
3836.
H2 O
82.26
14
8
CH3Cl
Photoabsorption data used for
Energy range (eV) Intervals
3.92–5.75
2
5.75–7.12
3
7.12–8.70
2
8.70–9.81
1
9.81–21.2
6
21.2–35.0
1
35.0–68.9
2
68.9–100
2
100–250
1
250–30,000
7
30,000–100,000
1
100,000–∞
1
the recommended CH3 Cl DOSD.
Source
Eden et al. [56]
Atkinson [41]
Felps et al. [57]
Russell et al. [58]
Olney et al. [59], high resolution
Olney et al. [59], low resolution
Wu et al. [50]
Olney et al. [59], low resolution
Chantler [33, 34]
Henke et al. [32]
Chantler [33, 34]
Laurent expansion
The constraints used were the KRT sum rule and the refractivity at
644.024 nm from Ramaswamy [60].
Pseudospectrum for CH3 Cl.
Ei
fi
1.499407E-01 4.176113E-06
1.803476E-01 3.297052E-05
2.731522E-01 3.260657E-02
3.451571E-01 4.244263E-01
4.648752E-01 2.453781E+00
6.781624E-01 5.250733E+00
1.127561E+00 3.780539E+00
4.036325E+00 3.242121E+00
1.982607E+01 1.032795E+01
6.834805E+02 4.878036E-01
15
Dispersion coefficients C6 (A–CH3 Cl) in atomic units.
A
C6 A
C6
PH3
337.8 NH3
185.0
PF3
347.0 CH4
223.1
PF5
403.5 ethane
382.8
PCl3
831.5 propane
542.9
SiCl4
947.0 n-butane
697.6
GeCl4
1008. n-pentane
855.0
SnCl4
1102. n-hexane
1008.
pyridine 759.7 n-heptane
1163.
He
22.87 n-octane
1317.
Ne
46.27 C2 H4
339.3
Ar
156.5 propene
504.0
Kr
223.3 1-butene
658.5
Xe
331.8 C2 H2
279.7
H
49.35 benzene
812.5
Li
459.0 methylamine
341.4
H2
68.09 dimethylamine
498.6
N2
166.7 trimethylamine
638.7
O2
151.8 methanol
291.6
Cl2
386.5 ethanol
453.0
HF
83.73 1-propanol
611.2
HCl
223.7 H2 CO
251.6
HBr
288.0 acetaldehyde
392.5
CO
176.2 acetone
551.9
CO2
245.3 methylpropylether 775.2
NO
162.3 ethoxyethane
774.5
N2 O
265.5 dimethylether
452.5
O3
249.2 SF6
458.9
SO2
335.4 SiH4
360.6
CS2
570.9 SiF4
347.8
OCS
391.9 CCl4
881.4
H2 S
287.3 C60
6184.
H2 O
131.3
16
9
CH3Br
Photoabsorption data used for
Energy range (eV) Intervals
4.28–6.0
3
6.0–7.13
3
7.13–9.36
1
9.36–12.0
3
12.0–24.8
4
24.8–49.9
2
49.9–200
5
200–30,000
13
30,000–100,000
1
100,000–∞
1
the recommended CH3 Br DOSD.
Source
JPL [38]
Locht et al. [61], high resolution
Olney et al. [62], high resolution
Locht et al. [61], high resolution
Olney et al. [62], low resolution
Olney et al. [62], high resolution
Olney et al. [62], low resolution
Henke et al. [32]
Chantler [33, 34]
Laurent expansion
The constraints used were the KRT sum rule and the refractivities at
644.024 nm and 435.956 nm measured by Ramaswamy [60].
Pseudospectrum for CH3 Br.
Ei
fi
1.879383E-01 2.134384E-04
2.211541E-01 1.265187E-02
2.638826E-01 1.270151E-01
3.476953E-01 7.952506E-01
4.779859E-01 3.097974E+00
6.978493E-01 5.640592E+00
1.199241E+00 3.798135E+00
5.443157E+00 9.412638E+00
3.263917E+01 2.022635E+01
2.163751E+03 8.891737E-01
17
Dispersion coefficients
A
C6
PH3
402.7
PF3
412.1
PF5
477.9
PCl3
989.9
SiCl4
1127.
GeCl4
1200.
SnCl4
1312.
pyridine 904.0
He
27.06
Ne
54.72
Ar
185.8
Kr
265.3
Xe
395.0
H
58.88
Li
558.0
H2
81.01
N2
197.8
O2
180.0
Cl2
459.7
HF
99.26
HCl
266.0
HBr
342.8
CO
209.3
CO2
291.2
NO
192.6
N2 O
315.3
O3
295.9
SO2
398.6
CS2
681.4
OCS
466.8
H2 S
342.3
H2 O
155.9
C6 (A–CH3 Br) in atomic units.
A
C6
NH3
219.9
CH4
265.2
ethane
455.1
propane
645.5
n-butane
829.4
n-pentane
1016.
n-hexane
1199.
n-heptane
1383.
n-octane
1566.
C2 H4
403.7
propene
599.6
1-butene
783.4
C2 H2
332.9
benzene
967.0
methylamine
405.8
dimethylamine
592.7
trimethylamine
759.3
methanol
346.4
ethanol
538.3
1-propanol
726.5
H2 CO
299.1
acetaldehyde
466.5
acetone
655.9
methylpropylether 921.3
ethoxyethane
920.6
dimethylether
537.8
SF6
543.8
SiH4
430.0
SiF4
412.1
CCl4
1048.
C60
7366.
18
10
CH3I
Photoabsorption data used for the recommended CH3 I DOSD.
Energy range (eV) Intervals Source
3.40–5.90
5 JPL [38]
5.90–7.75
3 Olney et al. [63], high resolution
7.75–250
20 Olney et al. [63], low resolution
250–100,000
18 Chantler [33, 34]
100,000–∞
1 Laurent expansion
The constraints used were the KRT sum rule and the refractivity at 667.81
nm measured by Joshi [64].
Pseudospectrum for CH3 I.
Ei
fi
1.486614E-01 7.655995E-05
1.713966E-01 4.625234E-03
2.280529E-01 9.820133E-02
2.898656E-01 7.095045E-01
3.932091E-01 2.675240E+00
5.852265E-01 5.466229E+00
1.034525E+00 4.244814E+00
3.510982E+00 1.551736E+01
3.964280E+01 3.206680E+01
3.816207E+03 1.217155E+00
19
Dispersion coefficients C6 (A–CH3 I) in atomic units.
A
C6 A
C6
PH3
505.3 NH3
274.5
PF3
513.1 CH4
331.0
PF5
591.9 ethane
568.0
PCl3
1239. propane
805.6
SiCl4
1408. n-butane
1035.
GeCl4
1501. n-pentane
1268.
SnCl4
1643. n-hexane
1496.
pyridine 1130. n-heptane
1725.
He
33.45 n-octane
1954.
Ne
67.56 C2 H4
504.8
Ar
231.0 propene
749.4
Kr
330.8 1-butene
978.8
Xe
494.2 C2 H2
416.4
H
74.00 benzene
1210.
Li
729.5 methylamine
506.4
H2
101.2 dimethylamine
739.6
N2
246.0 trimethylamine
947.6
O2
223.7 methanol
431.8
Cl2
574.1 ethanol
671.2
HF
123.1 1-propanol
906.3
HCl
332.0 H2 CO
373.0
HBr
429.0 acetaldehyde
581.9
CO
260.7 acetone
818.1
CO2
362.2 methylpropylether 1149.
NO
239.5 ethoxyethane
1148.
N2 O
392.8 dimethylether
670.7
O3
368.3 SF6
674.0
SO2
497.0 SiH4
539.8
CS2
857.3 SiF4
510.7
OCS
584.9 CCl4
1309.
H2 S
429.1 C60
9228.
H2 O
194.1
20
11
C2F6
Photoabsorption data used for the recommended C2 F6 DOSD.
Energy range (eV) Intervals Source
10.1–19.5
4 Robin [65]
19.5–35.0
5 Lee et al. [30]
35.0–293
13 Henke et al. [32]
293–328
1 Ishii et al. [66]
328–683
3 Henke et al. [32]
683-728
1 Ishii et al. [66]
728–30,000
5 Henke et al. [32]
30,000–100,000
1 Chantler [33, 34]
100,000–∞
1 Laurent expansion
The constraints used were the KRT sum rule and the refractivities at
587.720 nm and 447.270 nm from Gault and Shepherd [45].
Pseudospectrum for C2 F6 .
Ei
fi
3.801138E-01 2.551149E-02
4.284612E-01 2.313257E-01
5.069878E-01 1.136026E+00
6.362087E-01 3.285385E+00
8.588452E-01 6.492286E+00
1.327969E+00 1.120864E+01
2.347378E+00 1.563600E+01
5.562051E+00 1.244701E+01
3.168900E+01 1.495543E+01
3.998430E+02 5.823966E-01
21
Dispersion coefficients C6 (A–C2 F6 ) in atomic units.
A
C6 A
C6
PH3
431.1 NH3
242.7
PF3
464.6 CH4
291.7
PF5
555.0 ethane
501.0
PCl3
1076. propane
710.5
SiCl4
1233. n-butane
913.3
GeCl4
1308. n-pentane
1120.
SnCl4
1430. n-hexane
1321.
pyridine 990.3 n-heptane
1524.
He
31.65 n-octane
1726.
Ne
65.46 C2 H4
441.4
Ar
208.7 propene
656.2
Kr
294.6 1-butene
858.7
Xe
432.0 C2 H2
363.2
H
62.38 benzene
1056.
Li
517.7 methylamine
447.8
H2
88.22 dimethylamine
653.8
N2
223.3 trimethylamine
837.4
O2
205.1 methanol
384.9
Cl2
504.0 ethanol
596.4
HF
114.3 1-propanol
802.8
HCl
292.7 H2 CO
331.6
HBr
373.7 acetaldehyde
516.3
CO
234.2 acetone
726.1
CO2
328.5 methylpropylether 1019.
NO
218.0 ethoxyethane
1017.
N2 O
353.2 dimethylether
595.5
O3
334.6 SF6
630.6
SO2
443.5 SiH4
459.5
CS2
724.5 SiF4
476.6
OCS
506.9 CCl4
1151.
H2 S
368.7 C60
8020.
H2 O
175.0
22
12
CCl3CF3
Photoabsorption data used for the recommended CCl3 CF3 DOSD.
Energy range (eV) Intervals Source
4.96–5.39
1 JPL [38]
5.39–6.70
3 Simon et al. [67]
6.70–11.6
4 Doucet et al. [68]
11.6–31.0
7 Lee et al. [69]
31.0–200
12 Henke et al. [32]
200–325
5 Chantler [33, 34]
325–30,000
14 Henke et al. [32]
30,000–100,000
1 Chantler [33, 34]
100,000–∞
1 Laurent expansion
The constraints used were the KRT sum rule and the MP2 static dipole
polarizability from Thakkar and Wu [70].
Pseudospectrum for CCl3 CF3 .
Ei
fi
2.238423E-01 5.758244E-04
2.575096E-01 1.976723E-02
3.280992E-01 4.808014E-01
3.978095E-01 2.345719E+00
5.623240E-01 7.532003E+00
8.373685E-01 1.350018E+01
1.556018E+00 1.224096E+01
4.708013E+00 1.888932E+01
2.351877E+01 3.336535E+01
6.680366E+02 1.625319E+00
23
Dispersion coefficients
A
C6
PH3
801.5
PF3
833.7
PF5
976.3
PCl3
1980.
SiCl4
2258.
GeCl4
2402.
SnCl4
2626.
pyridine 1812.
He
55.42
Ne
112.9
Ar
375.6
Kr
534.2
Xe
791.4
H
116.8
Li
1060.
H2
162.1
N2
400.5
O2
365.5
Cl2
921.9
HF
202.2
HCl
534.1
HBr
686.2
CO
422.5
CO2
589.3
NO
390.2
N2 O
636.7
O3
599.1
SO2
803.0
CS2
1353.
OCS
933.1
H2 S
682.7
H2 O
315.1
C6 (A–CCl3 CF3 ) in atomic units.
A
C6
NH3
442.0
CH4
532.5
ethane
914.0
propane
1296.
n-butane
1666.
n-pentane
2042.
n-hexane
2408.
n-heptane
2778.
n-octane
3146.
C2 H4
808.9
propene
1202.
1-butene
1571.
C2 H2
666.6
benzene
1937.
methylamine
815.6
dimethylamine
1191.
trimethylamine
1526.
methanol
697.7
ethanol
1083.
1-propanol
1461.
H2 CO
601.9
acetaldehyde
938.4
acetone
1320.
methylpropylether 1853.
ethoxyethane
1851.
dimethylether
1082.
SF6
1110.
SiH4
855.3
SiF4
840.7
CCl4
2103.
C60
14740
24
References
[1] D. J. Margoliash, W. J. Meath. J. Chem. Phys. 68 (1978) 1426.
[2] B. L. Jhanwar, W. J. Meath. Mol. Phys. 41 (1980) 1061.
[3] A. J. Thakkar. J. Chem. Phys. 75 (1981) 4496.
[4] B. L. Jhanwar, W. J. Meath. Chem. Phys. 67 (1982) 185.
[5] A. Kumar, W. J. Meath. Chem. Phys. 91 (1984) 411.
[6] A. Kumar, W. J. Meath. Mol. Phys. 54 (1985) 823.
[7] A. Kumar, G. R. G. Fairley, W. J. Meath. J. Chem. Phys. 83 (1985)
70.
[8] A. J. Thakkar. J. Chem. Phys. 89 (1988) 2092.
[9] R. J. Pazur, A. Kumar, R. A. Thuraisingham, W. J. Meath. Can. J.
Chem. 66 (1988) 615.
[10] A. Kumar, W. J. Meath. Mol. Phys. 75 (1992) 311.
[11] G. R. Burton, W. F. Chan, G. Cooper, C. E. Brion, A. Kumar, W. J.
Meath. Can. J. Chem. 71 (1993) 341.
[12] A. Kumar. J. Mol. Struct. (Theochem) 591 (2002) 91.
[13] M. Kumar, A. Kumar, W. J. Meath. Mol. Phys. 100 (2002) 3271.
[14] A. Kumar, M. Kumar, W. J. Meath. Mol. Phys. 101 (2003) 1535.
[15] A. Kumar, M. Kumar, W. J. Meath. Chem. Phys. 286 (2003) 227.
[16] A. Kumar, W. J. Meath. J. Comput. Meth. Sci. Eng. 4 (2004) 307.
[17] A. Kumar, B. L. Jhanwar, W. J. Meath. Collect. Czech. Chem. Commun. 70 (2005) 1196.
[18] A. Kumar, B. L. Jhanwar, W. Meath. Can. J. Chem. 85 (2007) 724.
[19] A. Kumar, W. J. Meath. Mol. Phys. 106 (2008) 1531.
25
[20] A. Kumar, A. J. Thakkar. J. Chem. Phys. 132 (2010) 074301.
[21] A. Kumar, A. J. Thakkar. Chem. Phys. Lett. 516 (2011) 208.
[22] A. Kumar, A. J. Thakkar. J. Chem. Phys. 135 (2011) 074303.
[23] A. J. Thakkar. Z. Phys. Chemie 230 (2016) in press. URL http://dx.
doi.org/10.1515/zpch-2015-0693.
[24] A. Kumar, A. J. Thakkar. Mol. Phys. 115 (2016) in press. URL http:
//dx.doi.org/10.1080/00268976.2016.1143568.
[25] Y. N. Kalugina, A. J. Thakkar. Mol. Phys. 113 (2015) 2939.
[26] N. Watanabe, D. Suzuki, M. Takahasi. J. Chem. Phys. 134 (2011)
064307.
[27] R. Y. L. Chim, R. A. Kennedy, R. P. Tuckett. Chem. Phys. Lett. 367
(2003) 697.
[28] G. C. King, J. W. McConkey. J. Phys. B: At. Molec. Phys. 11 (1978)
1861.
[29] S. Ali. Gas phase vacuum-ultraviolet (VUV) spectroscopy of small halogenated polyatomic molecules. Ph.D. thesis, University of Birmingham
(2007).
[30] L. C. Lee, E. Phillips, D. L. Judge. J. Chem. Phys. 67 (1977) 1237.
[31] J. W. Au, G. R. Burton, C. E. Brion. Chem. Phys. 221 (1997) 151.
[32] B. L. Henke, E. M. Gullikson, J. C. Davis. At. Data Nucl. Data Tables
54 (1993) 181.
[33] C. T. Chantler. J. Phys. Chem. Ref. Data 24 (1995) 71.
[34] C. T. Chantler. J. Phys. Chem. Ref. Data 29 (2000) 597.
[35] M. de Simone, M. Coreno, M. Alagia, R. Richter, K. C. Prince. J. Phys.
B: At. Mol. Opt. Phys. 35 (2002) 61.
[36] V. N. Sivkov, V. N. Akimov, A. S. Vinogradov, T. M. Zimkina. Opt.
Spektrosk. 60 (1986) 318.
26
[37] M. O. Bulanin, I. M. Kislyakov. Opt. Spectrosc. 93 (2002) 31.
[38] Chemical kinetics and photochemical data for use in atmospheric studies. JPL publication 10-6, Jet Propulsion laboratory, California Institute
of Technology, Pasadena, CA (2011).
[39] S. Eden, P. Limão-Vieira, S. V. Hoffmann, N. J. Mason. Chem. Phys.
323 (2006) 313.
[40] W. Herkt, G. Müller, R. Winkler. Optica Acta 22 (1975) 667.
[41] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson,
R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, M. J. Wallington.
Atmos. Chem. Phys. 8 (2008) 4141.
[42] T. Ibuki, A. Hiraya, K. Shobatake. J. Chem. Phys. 90 (1989) 6290.
[43] D. P. Seccombe, R. Y. L. Chim, R. P. Tuckett, H. W. Jochims,
H. Baumgärtel. J. Chem. Phys. 114 (2001) 4058.
[44] H. W. Jochims, W. Lohr, H. Baumgärtel. Ber. Bunsen-Ges. 80 (1976)
130.
[45] W. A. Gault, G. G. Shepherd. Appl. Opt. 12 (1973) 1739.
[46] D. L. Baulch, R. A. Cox, J. Hampson, R. F., J. A. Kerr, J. Troe, R. T.
Watson. J. Phys. Chem. Ref. Data 9 (1980) 295.
[47] Y. Kalugina, A. J. Thakkar. Chem. Phys. Lett. 644 (2016) 20.
[48] M. Suto, L. C. Lee. J. Chem. Phys. 79 (1983) 1127.
[49] L. C. Lee, J. C. Han, C. Ye, M. Suto. J. Chem. Phys. 92 (1990) 133.
[50] C. Y. R. Wu, L. C. Lee, D. L. Judge. J. Chem. Phys. 71 (1979) 5221.
[51] F. C. Brown, R. Z. Bachrach, A. Bianconi. Chem. Phys. Lett. 54 (1978)
425.
[52] K. L. Ramaswamy. Proc. Ind. Acad. Sci. A 2 (1935) 630.
[53] T. N. Olney, G. Cooper, W. F. Chan, G. R. Burton, C. E. Brion, K. H.
Tan. Chem. Phys. 189 (1994) 733.
27
[54] P. Sauvageau, R. Gilbert, P. P. Berlow, C. Sandorfy. J. Chem. Phys. 59
(1973) 762.
[55] R. C. Burns, C. Graham, A. R. M. Weller. Mol. Phys 59 (1986) 41.
[56] S. Eden, P. Limão-Vieira, S. V. Hoffmann, N. J. Mason. Chem. Phys.
331 (2007) 232.
[57] W. S. Felps, K. Rupnik, S. P. McGlynn. J. Phys. Chem. 95 (1991) 639.
[58] B. R. Russell, L. O. Edwards, J. W. Raymonda. J. Am. Chem. Soc. 95
(1973) 2129.
[59] T. N. Olney, G. Cooper, W. F. Chan, G. R. Burton, C. E. Brion, K. H.
Tan. Chem. Phys. 205 (1996) 421.
[60] K. L. Ramaswamy. Proc. Ind. Acad. Sci. A 4 (1936) 675.
[61] R. Locht, B. Leyh, D. Dehareng, H. W. Jochims, H. Baumgärtel. Chem.
Phys. 317 (2005) 87.
[62] T. N. Olney, G. Cooper, W. F. Chan, G. R. Burton, C. E. Brion, K. H.
Tan. Chem. Phys. 218 (1997) 127.
[63] T. N. Olney, G. Cooper, C. E. Brion. Chem. Phys. 232 (1998) 211.
[64] R. V. Joshi. J. Maharaja Sayajirao Univ. Baroda 9 (1960) 27.
[65] M. B. Robin. Higher excited states of polyatomic molecules, volume I.
Academic, New York (1974).
[66] I. Ishii, R. McLaren, A. P. Hitchcock, K. D. Jordan, Y. Choi, M. B.
Robin. Can. J. Chem. 66 (1988) 2104.
[67] P. C. Simon, D. Gillotay, N. Vanlaethem-Meurée, J. Wisemberg. Ann.
Geophys. 6 (1988) 239.
[68] J. Doucet, P. Sauvageau, C. Sandorfy. J. Chem. Phys. 62 (1975) 355.
[69] M. S. Lee, M. Park, Y. Chung. J. Korean Phys. Soc. 42 (2003) 493.
[70] A. J. Thakkar, T. Wu. J. Chem. Phys. 143 (2015) 144302.
28