Exercises Section 1.4 – Area of Surfaces of Revolution 1. Find the lateral (side) surface area of the cone generated by revolving the line segment y x , 0 x 4 , about the x-axis. Check your answer with the geometry formula 2 Lateral surface area 1 ba se circumference slant height 2 2. Find the lateral surface area of the cone generated by revolving the line segment y x , 0 x 4 , 2 about the y-axis. Check your answer with the geometry formula Lateral surface area 1 ba se circumference slant height 2 3. Find the lateral surface area of the cone frustum generated by revolving the line segment y x 1 , 1 x 3 , about the x-axis. Check your answer with the geometry formula 2 2 1 Frustum surface area r r 4. 2 slant height Find the lateral surface area of the cone frustum generated by revolving the line segment y x 1 , 1 x 3 , about the y-axis. Check your answer with the geometry formula 2 2 1 Frustum surface area r r 2 slant height 5. 3 Find the area of the surface generated by y x , 0 x 2, x axis 9 6. Find the area of the surface generated by y 2 x x2 , 0.5 x 1.5, x axis 7. Find the area of the surface generated by y x 1, 1 x 5, x axis 8. Find the area of the surface generated by x 2 4 y 32 0 y 15 , 4 y axis 9. Find the area of the surface generated by x 2 y 1 5 y 1, 8 10. y 1 x2 2 3 3/2 , 0 x 2; evaluate the integral S 11. y axis y axis (Hint: Express ds dx 2 dy 2 in terms of dy, and 2 y ds with appropriate limits.) Did you know that if you can cut a spherical loaf of bread into slices of equal width, each slice will have the same amount of crust? To see why, suppose the semicircle y r 2 x 2 shown here is revolved about the x-axis to generate a sphere. Let AB be an arc of the semicircle that lies above an interval of length h on the x-axis. Show that the area swept out by AB does not depend on the location of the interval. (It does depend on the length of the interval.) 33 Section 1.4 – Area of Surfaces of Revolution Solution Exercise Find the lateral (side) surface area of the cone generated by revolving the line segment y x , 0 x 4 , 2 about the x-axis. Check your answer with the geometry formula Lateral surface area 1 ba se circumference slant height 2 Solution dy 1 dx 2 2 dy 5 1 1 1 4 2 dx b S 2 a 2 dy y 1 dx dx 4 2 0 5 2 x 5 dx 2 2 4 xdx 0 4 5 1 x2 2 2 0 5 42 0 4 4 5 ba se circumference 2 r 2 2 4 slant height 42 22 20 2 5 Lateral surface area 1 ba se circumference slant height 2 1 4 2 5 2 4 5 32 Exercise Find the lateral surface area of the cone generated by revolving the line segment y x , 0 x 4 , about 2 the y-axis. Check your answer with the geometry formula Lateral surface area 1 ba se circumference slant height 2 Solution x 0 y 0 y x x 2y 2 x 4 y 2 dx 2 dy 2 dy 1 1 4 5 dx S 2 d 2 x 1 dx dy dy c 2 2 2 y 5dy 0 4 5 2 ydy 0 2 4 5 1 y 2 2 0 2 5 4 0 8 5 ba se circumference 2 4 8 slant height 42 22 20 2 5 Lateral surface area 1 ba se circumference slant height 2 1 8 2 5 2 8 5 33 Exercise Find the lateral surface area of the cone frustum generated by revolving the line segment y x 1 , 1 x 3 , about the x-axis. Check your answer with the geometry formula 2 2 1 Frustum surface area r r 2 slant height Solution dy 1 dx 2 2 dy 5 1 1 1 dx 4 2 b S 2 a 3 2 2 dy y 1 dx dx x 1 5 dx 2 2 2 1 3 5 2 x 1 dx 1 3 5 1 x 2 x 2 2 1 5 1 3 2 3 1 1 2 1 2 2 2 5 9 3 3 2 2 2 5 6 2 3 5 r 1 1 1 r 3 1 2 1 2 2 slant height 2 2 2 2 12 3 12 1 Frustum surface area r r 2 5 slant height 1 2 5 3 5 34 Exercise Find the lateral surface area of the cone frustum generated by revolving the line segment y x 1 , 1 x 3 , about the y-axis. Check your answer with the geometry formula 2 2 1 Frustum surface area r r 2 slant height Solution y x 1 2y x 1 x 2y 1 2 2 dx 2 dy 2 1 dx 1 4 5 dy 2 S 2 2 y 1 5 dy 1 2 2 5 2 y 1 dy 1 2 2 5 y 2 y 1 2 2 5 2 2 12 1 4 5 r 1 r 3 1 2 slant height 2 12 3 12 1 Frustum surface area r r 2 5 slant height 1 3 5 4 5 35 Exercise 3 Find the area of the surface generated by y x , 0 x 2, x axis 9 Solution dy 1 2 x dx 3 2 dy 1 1 1 x4 1 9 x4 9 3 dx S 2 2 0 2 27 2 27 54 x 3 1 9 x 4 dx 9 3 2 25 25 x 3 9 x 4 dx u 9 x4 du 4 x3dx 1 du x3dx 0 4 u1/2 1 du 9 x 2 u 25 x 0 u 9 u1/2 du 9 25 2 u3/2 54 3 9 253/2 93/2 81 98 81 36 4 Exercise Find the area of the surface generated by y x 1, 1 x 5, x axis Solution y x 1 x 1 1/2 dy 1 1/2 x 1 2 dx 2 dy 1 1 1 1 x 1 4 dx 1 1 4 x1 4x 4 1 4 x 1 1 4x 5 2 x 1 S 2 5 1 5 25 x 1 1 4 x 5 dx 2 x 1 4 x 5 dx 1 9 x 5 u 25 u 4 x 5 du 4dx x 1 u 9 1 u1/2 du 4 25 2 u3/2 43 9 253/2 93/2 6 98 6 49 3 37 Exercise Find the area of the surface generated by x 2 4 y 0 y 15 , 4 Solution dy 1/2 2 1 4 y 1 1 2 dx 4 y 2 dy 1 1 1 4 y dx S 2 4 y 1 4 y 5 y 4 y 15/4 15/4 15/4 2 4 y 0 4 5 y 4 y dy 5 y dy d 5 y dy 0 4 5 y 1/2 d 5 y 0 3/2 15/4 4 2 5 y 3 0 3/2 3/2 8 5 15 5 0 4 3 3/2 3/2 8 5 5 3 4 8 5 5 5 5 3 8 8 5 5 7 8 3 8 5 5 1 1 8 3 35 5 3 38 y axis Exercise Find the area of the surface generated by x 2 y 1 5 y 1, 8 Solution dy 1 1/2 2 y 1 2 1 2 dx 2 y 1 2 dy 1 1 1 2y 1 dx S 2 1 1 1 2y 2y 1 2y 2 y 1 2y 1 5/8 2 dy u 2 y du 2dy 2 y dy 5/8 2 2 u1/2 1 du 5/8 1 u1/2 du 5/8 2 2 y 3 3/2 1 5/8 3/2 5 3/2 2 2 4 3 2 2 2 5 5 8 3 2 16 2 5 5 8 3 16 2 5 5 12 39 y axis Exercise y 1 x2 2 3 3/2 , 0 x 2; the integral S y axis (Hint: Express ds dx 2 dy 2 in terms of dx, and evaluate 2 x ds with appropriate limits.) Solution dy 1 3 x 2 2 32 1/2 2 x dx x ds dx x x 2 2 dx 2 x 2 2 dx 2 dx 2 x 2 x 2 2 dx 2 1 x 4 2 x 2 dx 1 x2 dx 2 1 x 2 dx S 2 2 x ds 2 0 2 x 1 x 2 dx x 2 u 3 u 1 x 2 du 2 xdx x 0 u 1 3 1 1 u du 2 3 1 u2 2 1 32 12 2 8 2 4 40 Exercise Did you know that if you can cut a spherical loaf of bread into slices of equal width, each slice will have the same amount of crust? To see why, suppose the semicircle y r 2 x 2 shown here is revolved about the x-axis to generate a sphere. Let AB be an arc of the semicircle that lies above an interval of length h on the x-axis. Show that the area swept out by AB does not depend on the location of the interval. (It does depend on the length of the interval.) Solution y r 2 x2 dy 2 x x dx 2 r 2 x 2 2 r x2 2 2 dy 1 1 x dx r2 x2 r2 r2 x2 r r2 x2 S 2 a h r2 x2 a 2 r r r2 x2 dx a h dx a 2 rx a h a 2 r a h a 2 rh 41
© Copyright 2025 Paperzz