Exam Name___________________________________ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the inequality. Write the solution set in interval notation. 5h > -1 1) h -5 2) -x2 - 12x - 32 ≥ 0 2) Simplify the expression. 3) log 0.00001 3) 1 512 4) log8 5) ln 17 e 1) 4) 5) Find f(-x) and determine whether f is odd, even, or neither. 6) f (x) = -2x4 - 3x3 6) List the possible rational zeros. 7) f (x) = 9x4 + 6x3 - 6x + 33 7) Identify the vertex, axis of symmetry, and intercepts for the graph of the function. 8) g(x) = x2 - 4x - 12 8) Find two functions f and g such that h(x) = (f ∘ g)(x). 9) h(x) = 3 5x - 9 9) Find the indicated function and write its domain in interval notation. 10) m (x) = x + 3, n(x) = x - 1, (m ∘ n)(x) = ? 11) p(x) = x2 + 6x, q(x) = 2 - x, q (x) = ? p 10) 11) B-1 Identify the location and value of any relative maxima or minima of the function. 12) 12) y 4 3 2 1 -4 -3 -2 -1 -1 1 2 3 4 x -2 -3 -4 Find f(x + h) - f(x) for the given function. h 13) f (x) = x2 - 6x. 13) A polynomial f (x) and one of its zeros are given. Find all the zeros. 14) f (x) = x4 - 6x3 + 18x2 + 42x - 175; 3 + 4i is a zero 14) Determine if the function is odd, even, or neither. 15) f (x) = 4x3 + 5|x5| + 3 15) Graph the function. x + 3, for x > 0 t ( x ) = x2, for x ≤ 0 16) 16) 17) f (x) = x2 -4x - 3x - 4 17) Solve the problem. 18) Use transformations of the graph of y = log x to graph the function. 3 18) y = log3(x - 7) + 3 19) Use the graph of y = 3x to graph the function. Write the domain and range in interval notation. f (x) = 3x + 5 + 3 Graph the function and write the domain and range in interval notation. 20) f (x) = 2x B-2 19) 20) Evaluate the function for the given value of x. 21) f (x) = 2x, g(x) = |x - 2|, (f · g)(1) = ? 22) 21) f (x) = x2 + 4x, g(x) = 4x - 2, (f ∘ g)(-3) = ? 22) Graph the function by using a transformation of the graph of y = 1 . x 23) f (x) = 1 x-2 23) A one-to-one function is given. Write an expression for the inverse function. 24) f (x) = x + 7 x+2 Use the remainder theorem to evaluate the polynomial for the given value of x. 25) f (x) = 4x4 - 5x3 + 24x2 - 30x - 315; f (3) 24) 25) Use interval notation to write the intervals over which f is (a) increasing, (b) decreasing, and (c) constant. 26) 26) 5 y 4 3 2 1 -5 -4 -3 -2 -1 -1 1 2 3 4 5 x -2 -3 -4 -5 B-3 Determine if the relation defines y as a one-to-one function of x. 27) 27) y 4 3 2 1 -4 -3 -2 -1 -1 1 2 3 4 x -2 -3 -4 Use transformations to graph the given function. 28) f(x) = -x + 2 28) Sketch the function. 29) f (x) = -x4 + 14x2 - 13 29) Write the domain in interval notation. 30) f (x) = ln(x2 - 5x + 6) 30) B-4 Answer Key Testname: 1314PE2HCCS 1) 2) 3) 4) 5) 6) 7) 8) -∞, 5 ∪ (5, ∞) 6 [-8, -4] -5 -3 -7 f (-x) = -2x4 + 3x3; f is neither odd nor even. ±1, ± 1 , ± 1 , ±3, ±11, ±33, ± 11 , ± 11 3 9 3 9 Vertex at (2, -16); axis: x = 2; x-intercepts: (-2, 0) and (6, 0); y-intercept: (0, -12) 3 f (x) = x and g(x) = 5x - 9 10) (m ∘ n)(x) = x + 2; domain: [-2, ∞) q (x) = 2 - x ; (-∞, -6) ∪ (-6, 0) ∪ (0, 2] 11) p x2 + 6x 12) At x = -2, the function has a relative maximum of -1. At x = 1 the function has a relative minimum of -2. At x = 4 the function has a relative maximum of 0. 13) 2x + h - 6 14) ± 7, 3 ± 4i 15) neither 9) 16) y 4 3 2 1 -4 -3 -2 -1 -1 1 2 3 4 x -2 -3 -4 B-5 Answer Key Testname: 1314PE2HCCS 17) y 5 -5 5 x -5 18) 10 y 5 -10 -5 5 10 x 5 10 x -5 -10 19) 10 y 5 -10 -5 -5 -10 Domain: (-∞, ∞) Range: (3, ∞) B-6 Answer Key Testname: 1314PE2HCCS 20) y 10 -5 5 x Domain: (-∞, ∞) Range: (0, ∞) 21) (f · g)(1) = 2 22) ( f ∘ g)(-3) = 140 23) y 5 -5 5 x -5 24) f -1(x) = 7 - 2x x-1 0 a. (-∞, -2) ∪ (2, ∞) b. never decreasing c. (-2, 2) 27) No 25) 26) B-7 Answer Key Testname: 1314PE2HCCS 28) y 4 3 2 1 -4 -3 -2 -1 -1 1 2 3 4 x -2 -3 -4 29) 60 50 40 30 20 10 -5 30) -10 -20 -30 -40 -50 -60 y 5x (-∞, 2) ∪ (3, ∞) B-8
© Copyright 2026 Paperzz