MATH 2412 – Precalculus Related Angle-Sum-DifferenceDouble Angle-Half Angle Formula Exercises In Problems 1-4, determine the angle A in [0,2π), rounded to the nearest thousandth. 1. sin A = –0.437, with A in Q III 2. cos A = –0.892, with A in Q II 3. tan A = –4.815, with A in Q II 4. csc A = –6.287, with A in Q IV 3 1 , with A in Q III, and sin B = − , with B in Q III, determine (a) sin(A + B) , 4 2 (b) cos(A − B) , and (c) tan(A + B) . 5. Given tan A = 4 € €6. Given sin A = − , with A in€Q III, determine (a) sin2A , (b) cos2A , and (c) tan2A . 5 € € In Problems 7 and 8, prove the given identity by transforming one side of the equation into the € € € other. € π 7. sin(π − β ) = sin β 8. cos x + = −sin x 2 2 A A A 9. Given sin A = − , with A in Q IV, determine (a) sin , (b) cos , and (c) tan . 3 2 2 2 10. Use Half-Angle Formulas and exact trig€functions values for 330° to determine exact values for each of the following: (a) sin165° , (b) cos165° , and (c) tan165° . € €Answers € € 1. 3.594 5. (a) € € 2. 2.673 € 7. sin(π − β ) = sin π cos β − cos π sin β € = (0)cos β € − (−1)sin β 9. (a) € € 10. (a) 6. (a) € 2− 3 2− 3 2+ 3 , (b) − , (c) − or −2 + 3 €2 + 3 €2 €2 € € 4. 6.123 24 7 24 , (b) − , (c) − 25 25 7 π π π 8. cos x + = cos x cos − sin x sin 2€ 2 2 € = cos x(0) − sin x(1) = −sin x 3− 5 3− 5 3+ 5 −3 + 5 , (b) − , (c) − or 6 6 2 3+ 5 € € € € 3. 1.776 3 3+4 3 3+4 4 3+3 , (b) , (c) 10 10 4 3−3 = sin β € €
© Copyright 2026 Paperzz