MATH34011 Solution to Coursework 1 1a) tan x ∼ 2 X an φn (x), 0 with φn = x2n+1 as x → 0. Hence " # tan x tan x a0 = lim = lim =1 x→0 x→0 φ0 x [2 marks] Next tan x − x sec2 x − 1 tan x − a1 φ0 = lim = lim a1 = lim , x→0 x→0 x→0 φ1 x3 3x2 # " " # using l’Hospital’s rule. Rearranging gives 1 tan2 x = . a1 = lim 2 x→0 3x 3 # " [4 marks] Finally # x4 24 3 tan x − x − 31 x3 sin x − (x + x3 ) cos x tan x − a0 φ0 − a1 φ1 a2 = lim = lim = lim , x→0 x→0 x→0 φ2 x5 x5 cos x " # lim (x − x3 3 + x5 5! x→0 " x3 )(1 3 + . . .) − (x + − x2 5 x (1 − 2 + . . .) x2 2 + + . . .) = 2 . 15 [4 marks] b) φn = (sin x)2n+1 as x → 0. Hence " # tan x tan x a0 = lim = lim = 1. x→0 x→0 φ0 sin x [2 marks] Next tan x − sin x 1 − cos x 1 a1 = lim = lim = . 3 2 x→0 x→0 cos x sin x 2 sin x [4 marks] Finally tan x − sin x − 12 sin3 x 1 − cos x − 12 sin2 x cos x a2 = lim = lim , x→0 x→0 sin5 x sin4 x cos x " # 1 " # = lim x→0 1 − (1 − = lim x→0 x2 2 − x4 24 x2 2 x4 24 + − 12 (x2 − 3 + . . .) − 12 (x − x6 + . . .)2 (1 − 2 (1 − x2 + . . .)(x4 + . . .) x4 + 3 4 x (1 . . .)(1 − + ..) x2 2 + x4 24 x2 2 + . . .) =− + x4 24 + . . .) , 1 1 1 3 + + = . 24 4 6 8 [4 marks] 2) Z ∞ t e−t (1 + )−λ dt. λ 0 The form of the integrand suggests to put t = λT. Then I(λ) = I(λ) = λ Z ∞ e−λT (1 + T )−λ dT = λ 0 Z ∞ e−λP (T ) dT 0 where P (T ) = T + log(1 + T ). Now P 0 (T ) = 1 + [4 marks]. 1 , 1+T P 00 (T ) = − 1 . (1 + T )2 Note that P 0 (T ) > 0 for all T > 0 and so P (T ) is an increasing function of T . Thus the minimum of P (T ) is at T = 0 for T ≥ 0 and P (0) = 0. [4marks] So put u = P (T ) − P (0) = T + log(1 + T ). Hence I(λ) = λ Z ∞ −λP (T ) e dT = λ e−λu 0 0 For small T Z ∞ dT du. du T2 T3 T4 + − + ..., 2 3 4 T2 T3 u ∼ 2T − + + .... 2 3 u∼T +T − [5 marks] We can now use Watson’s lemma and we need dT /du for small u. Inverting, the leading term is T ∼ u/2 + . . . and so either put T ∼ u + c1 uα + c2 uβ + . . . , 2 T = u + c1 u 2 + c2 u 3 + . . . . 2 or try Then u ∼ 2T − T2 T3 + + ... 2 3 2 u 1 u 1 u u ∼ 2( +c1 u2 +c2 u3 +. . .)− ( +c1 u2 +c2 u3 +. . .)2 + ( +c1 u2 +c2 u3 +. . .)3 +. . . , 2 2 2 3 2 c1 1 1 u ∼ u + u2 (2c1 − ) + u3 (2c2 − + ) + O(u4 ). 8 2 24 [7 marks] Equating the coefficients if like powers of uto zero gives 1 c1 = , 8 Hence T ∼ c2 = c1 1 1 − =− . 4 48 192 u 1 1 3 + u2 − u + O(u4 ), 2 16 192 as u → 0. [5 marks] Thus 1 u u2 dT ∼ + − + .... du 2 8 64 Using Watson’s Lemma gives I(λ)λ Z ∞ 0 1 u u2 1 Γ(2) Γ(3) ( + − + . . .) du ∼ λ + − + ... . 2 8 64 2λ 8λ2 64λ3 " −λu e Hence I(λ) ∼ 1 1 1 + − + ... 2 8λ 32λ2 # as λ → ∞. [5 marks] 3
© Copyright 2026 Paperzz